


# Thurrock Waste Management Capacity Needs Assessment - 2009 Update

Final Report

September 2009



## Thurrock Waste Management Capacity Needs Assessment - 2009 Update

Final Report

September 2009

Prepared by: Phil Short

| For and on behalf of               |  |  |  |  |  |
|------------------------------------|--|--|--|--|--|
| Environmental Resources Management |  |  |  |  |  |
|                                    |  |  |  |  |  |
| Approved by: Simon Aumônier        |  |  |  |  |  |
|                                    |  |  |  |  |  |
| Signed:                            |  |  |  |  |  |
| month and                          |  |  |  |  |  |
|                                    |  |  |  |  |  |
| Position: Partner                  |  |  |  |  |  |
|                                    |  |  |  |  |  |
| Date: 20 September 2009            |  |  |  |  |  |
|                                    |  |  |  |  |  |

This report has been prepared by Environmental Resources Management the trading name of Environmental Resources Management Limited, with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.  $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left( \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left( \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left( \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}$ 

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk

## **CONTENTS**

| 1   | UPDATE OF THURROCK WASTE MANAGEMENT CAPACITY NEED ASSESSMENT | 1  |
|-----|--------------------------------------------------------------|----|
| 1.1 | Introduction                                                 | 1  |
| 1.2 | REPORT STRUCTURE                                             | 1  |
| 2   | RSS FORECAST ARISINGS                                        | 2  |
| 3   | WASTE ARISINGS UPDATE                                        | 4  |
| 3.1 | MUNICIPAL WASTE                                              | 4  |
| 3.2 | C&I Waste Arisings Update                                    | 11 |
| 3.3 | C&D Waste Arisings Update                                    | 12 |
| 3.4 | HAZARDOUS WASTE ARISINGS UPDATE                              | 13 |
| 3.5 | AGRICULTURAL WASTE ARISINGS                                  | 15 |
| 4   | CAPACITY DATA UPDATE                                         | 16 |
| 4.1 | Introduction                                                 | 16 |
| 4.2 | SITE CAPACITIES                                              | 16 |
| 5   | CAPACITY GAP ANALYSES                                        | 18 |
| 5.1 | RSS CONFORMITY SCENARIO                                      | 18 |
| 5.2 | ALTERNATIVE SCENARIOS                                        | 20 |
| 6   | C&I WASTE MANAGEMENT METHOD VARIATION                        | 30 |
| 6.1 | Introduction                                                 | 30 |
| 6.2 | SCENARIO 1 - 50/50 SPLIT (RSS)                               | 30 |
| 6.3 | SCENARIO 2 70/30 SPLIT (RSS)                                 | 31 |
| 6.4 | SCENARIO 1 - 50/50 SPLIT (OTHER FORECASTS)                   | 33 |
| 6.5 | SCENARIO 2 - 70/30 SPLIT (OTHER FORECASTS)                   | 35 |
| 7   | CONCLUSIONS                                                  | 38 |
| 7.1 | SENSITIVITY ANALYSES                                         | 39 |

# 1 UPDATE OF THURROCK WASTE MANAGEMENT CAPACITY NEED ASSESSMENT

#### 1.1 Introduction

This report is an update to the *Waste Management Need Assessment Report* produced by Environmental Resources Management Limited (ERM) for Thurrock Council in 2007. This update report should be read in conjunction with the original assessment.

This report provides updated information on:

- waste arisings;
- estimated current waste management capacity; and
- capacity gap analysis.

A sensitivity analysis has also been undertaken on the impact that assumptions about reduced economic growth would have on waste arisings.

Data on both waste arisings and waste capacity have been provided by Thurrock Council for use in this report.

Some of the data used in this version of the report remain the same as in the original report. These are not restated within this document. This study covers the period up to 2026/27, this is clearly a longer period than the East of England Plan – the Regional Spatial Strategy (RSS), which runs to 2021, and that which the LDF will plan for, however results for the longer period may prove useful. Results and conclusions have been provided for the year 2021, as well as the end of the forecasting period, to show the capacity gap at the end of the RSS period.

The purpose of this report is to update the evidence base to inform the waste policies and the drafting of the Thurrock LDF, both in terms of performance and capacity required in the future.

#### 1.2 REPORT STRUCTURE

This report is structured according to the following format:

- Section 2 RSS Forecast Arisings;
- Section 3 Waste Arisings Update;
- Section 4 Capacity Data Update;
- Section 5 Capacity Gap Analysis;
- Section 6 –C&I Waste Management Method Variation; and
- Section 7 Conclusions.

## 2 RSS FORECAST ARISINGS

This section assesses the figures included in the East of England Plan for arisings of MSW and C&I waste over the period 2006 – 2021. The forecast arisings are in *Table 2.1* below.

Table 2.1 RSS Forecast Arisings ('000 tonnes)

|         | MSW | C&I | Imports | Total |
|---------|-----|-----|---------|-------|
| 2005/06 | 83  | 197 | 320     | 600   |
| 2006/07 | 86  | 202 | 298     | 586   |
| 2007/08 | 90  | 207 | 277     | 574   |
| 2008/09 | 93  | 212 | 255     | 560   |
| 2009/10 | 97  | 217 | 233     | 547   |
| 2010/11 | 101 | 223 | 212     | 536   |
| 2011/12 | 101 | 230 | 190     | 521   |
| 2012/13 | 102 | 236 | 168     | 506   |
| 2013/14 | 103 | 242 | 146     | 491   |
| 2014/15 | 105 | 248 | 125     | 478   |
| 2015/16 | 106 | 257 | 103     | 466   |
| 2016/17 | 107 | 265 | 103     | 475   |
| 2017/18 | 108 | 274 | 103     | 485   |
| 2018/19 | 109 | 282 | 103     | 494   |
| 2019/20 | 110 | 291 | 103     | 504   |
| 2020/21 | 111 | 299 | 103     | 513   |

The tonnages reported above for the years 2005 -2009 are higher than those actually seen in practice in Thurrock. The forecasts were based on higher growth rates than have been shown to happen in reality.

The municipal waste forecasts are adjudged by the authority to be high and in light of this further work has been done to assess different waste forecasts and using different baselines. These updated forecasts are presented in *Section 3*. They follow on from the work carried out by ERM in 2007.

The RSS gives targets for recycling/composting and recovery of MSW and C&I wastes. The targets are as follows:

Table 2.2 Management Methods (%)

|                      | MSW  |      |      | C&I  |      |      |
|----------------------|------|------|------|------|------|------|
|                      | 2010 | 2015 | 2021 | 2010 | 2015 | 2021 |
| Recycling/Composting | 40   | 50   | 60   | N/A  | N/A  | N/A  |
| Other Recovery       | 10   | 20   | 38   | 72*  | 75*  | 98*  |
| Landfill             | 50   | 30   | 2    | 28   | 25   | 2    |

<sup>\*</sup> Total recovery

The target for recovering 98% of wastes is clearly more than that assumed in the previous report by ERM, which assumed that Thurrock would meet its LATS obligations, but not exceed this performance.

The combination of the arisings forecast and the management methods above produce the forecasts in the charts below.

Figure 2.1 MSW Forecasts by Management Methods

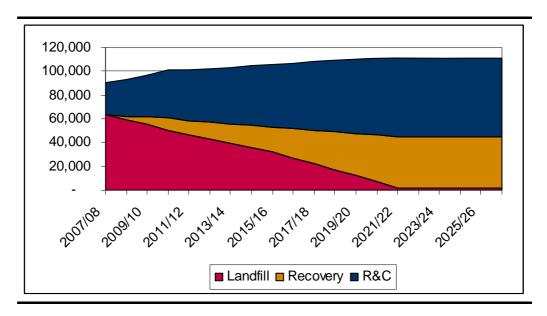
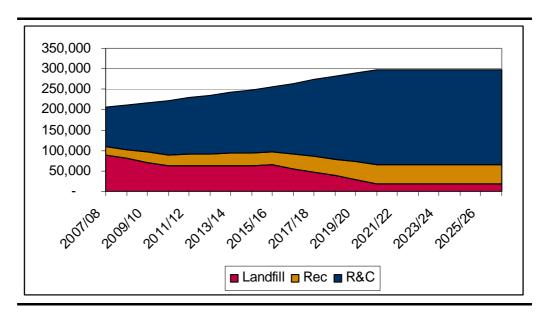
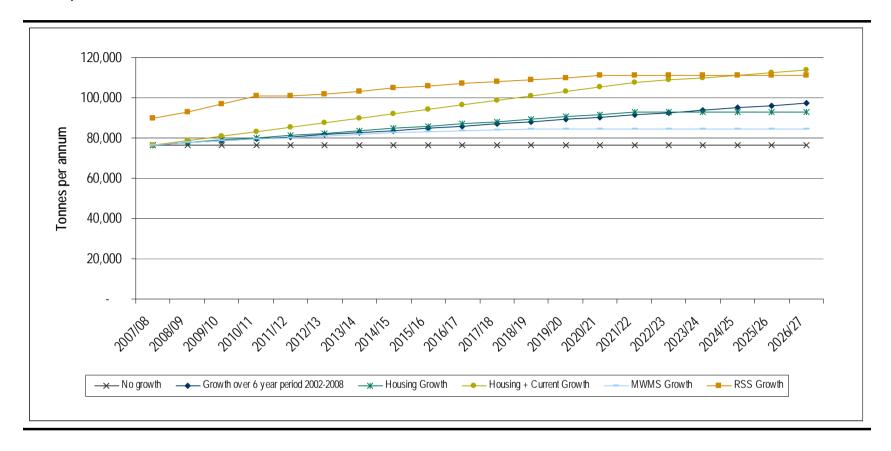




Figure 2.2 C&I Forecasts by Management Methods



This arisings forecast can then be compared to the capacity data in *Section 4*. The results of these comparisons are shown in *Section 5*.

#### 3


#### 3.1 MUNICIPAL WASTE

The original assessment included three growth scenarios for municipal solid waste (MSW) – No Growth, Housing Growth and MWMS Growth. This update presents more growth scenarios based on more up to date data. These data were provided by Thurrock Council. The growth forecasts are as follows.

- No growth scenario based on the 20007/08 figure for MSW arisings. These are assumed to remain constant over the next 20 years.
- Current growth scenario based on MSW data from 2001/02 2007/08. This shows a 1.27% increase per annum going forward.
- Housing growth scenario based on RSS forecasts of housing numbers for 2006 2021. Housing is assumed to stay constant from 2021 onwards.
- Housing plus current growth scenario this combines the assumed growth in housing with the assumed current waste growth scenario.
- Municipal Waste Management Strategy (MWMS) growth scenario this assumes the growth rates in the MWMS, which are 1% per annum growth until 2015/16, 0.5% per annum growth from then until 2019/20 and then 0% per annum growth thereafter.
- RSS growth scenario this assumes growth in line with RSS forecasts. The baseline used in the RSS sees a higher tonnage of MSW than currently recorded, meaning this forecast is high in contrast with the others. Forecast growth was 0% per annum after the RSS period ends in 2021.

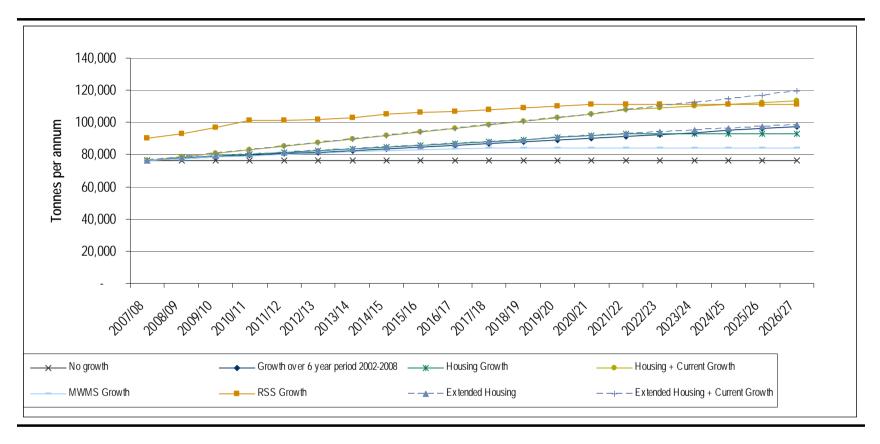

From these five growth scenarios, an upper and a lower bound were selected. The 'no growth' scenario is the lower bound and the 'housing plus current growth' is the upper bound. *Figure 3.1* presents the five forecasts. The figure highlights that, in 2027, there is a range of forecast arisings, with a 40,000 tonne per annum difference between the upper and lower bound. This equates to approximately 50% of the current arisings. The chart also shows that the RSS scenario shows a similar level of growth per annum, but starts from a higher baseline than the data used in this study. Assuming no further growth beyond the RSS forecast period to 2021 means that the RSS forecast finishes within the upper and lower bounds despite the larger level of baseline arisings assumed.

Figure 3.1 Municipal Solid Waste Growth Rate Scenarios



Two more growth forecasts were assessed to ensure comparability with the Housing growth forecasts expected in the Local Development Framework. These extend the current level of growth in housing to 2026/27. These are shown on the chart below. The 'extended housing' forecast leads to c.6,000 tonnes more per annum in 2026/27 than the 'housing' forecast. The same increase is forecast in the 'extended housing plus current growth' forecast.

Figure 3.2 Municipal Solid Waste Growth Rate Scenarios (Extended Housing Growth Figures Included)



#### 3.1.1 Recycling, Composting & Landfill Diversion Targets

MSW is subject to targets for recycling/composting, recovery and landfill. Since the production of the original report, the Thurrock MWMS has been adopted. This stipulates the following household recycling and composting targets:

- 2010/11 40% Recycling and Composting;
- 2015/16 50% Recycling and Composting; and
- 2019/20 60% Recycling and Composting.

In this report, these targets are assumed to be met. The MWMS also states that Thurrock will meet its landfill diversion obligations. Therefore, it has been assumed that the authority's landfill allowance trading scheme (LATS) targets are always met. The following charts show the upper and lower bounds for forecast future municipal waste arisings, presenting the split in the destination of the waste between recycling/composting, recovery and landfill.

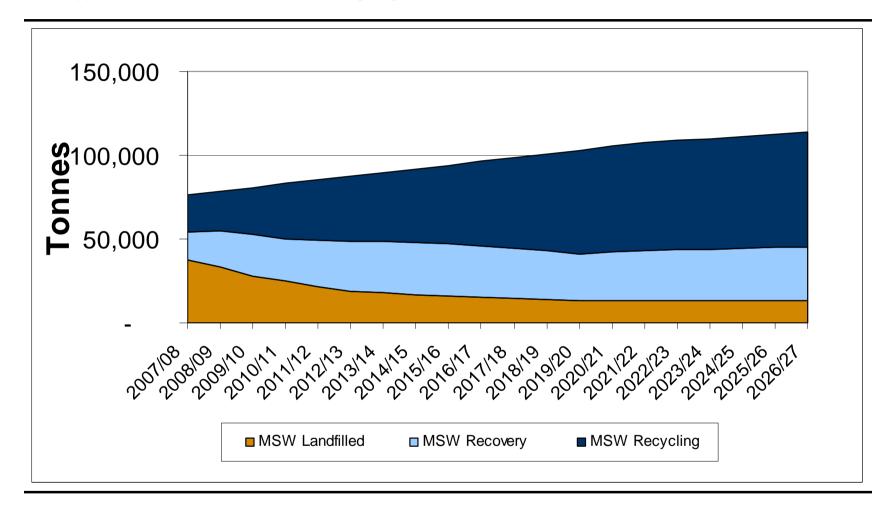
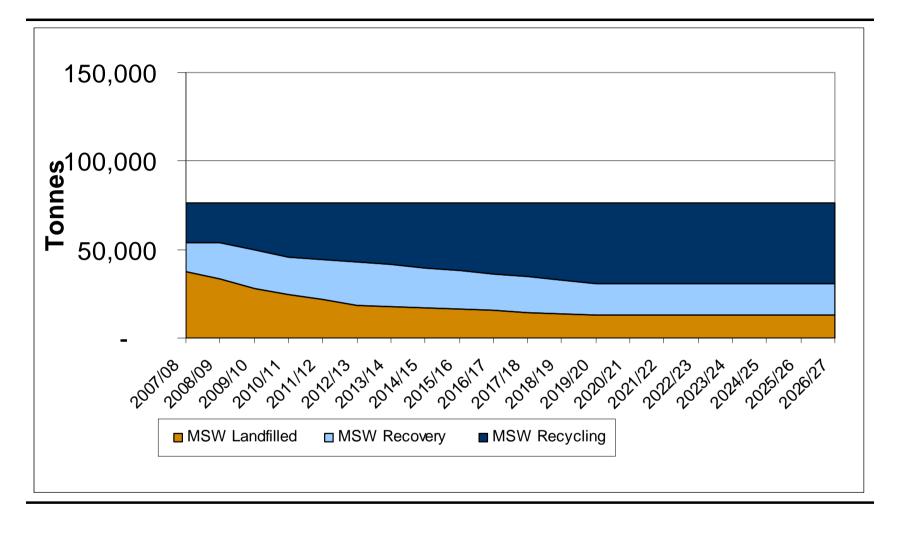
The 'recovery' section is assumed to be recovery other than recycling and composting however, it might be the case that these tonnages are in fact sent for recycling and composting rather than some form of energy/materials recovery.

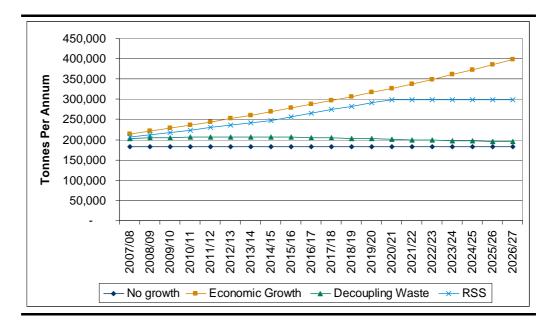
The RSS sets targets on a Regional level for waste management. The targets in the RSS are as follows:

- 2010 50% Recovery of waste (including recycling, composting and recovering value from waste);
- 2015 70% Recovery of waste (including recycling, composting and recovering value from waste); and
- 2021 98% Recovery of waste (including recycling, composting and recovering value from waste).

These targets, whilst not directly comparable with the Thurrock level recycling and composting targets show a similar shift away from landfill to other forms of management. This RSS conformity scenario is that discussed in *Section 2*.

Figure 3.3 MSW Upper Bound Growth Scenario, Incorporating Targets



Figure 3.4 MSW Lower Bound Growth Scenario, Incorporating Targets



#### 3.2 C&I WASTE ARISINGS UPDATE

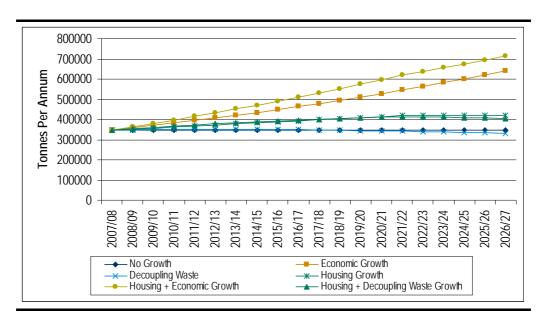
The same baseline data is used in this assessment as in the original work. Forecasts have been extended to 2026/27, as with MSW. The same three growth rates were used and the 'no growth' rate and the 'economic growth' rate form the worst and best case estimates. An extra growth rate has been included to provide consistency with the RSS. This shows the RSS forecast sits within the forecast highest and lowest growth rates. All four growth forecasts are shown below.

Figure 3.5 C&I Waste Growth Rate Scenarios



## 3.2.1 C&I Waste Management Methods

The original study included the assumption that the current <sup>(1)</sup> management methods for C&I waste would continue throughout the forecast period. The split of management method used was 57% total recovery (including R&C and recovery) increasing to meet RSS targets over time. The proportion that was sent for R&C was 83% of that total recovery, whilst recovery was only 17%. This assumption has been subject to a sensitivity test in this report. This creates two new scenarios, one where R&C and recovery are assumed to make up an equal share of the total recovery. One where the split moves to a recovery heavy bias, with 70% recovered and 30% sent to R&C. The results of this assessment can be found in *Section 6*.


<sup>(1)</sup> Based on SWMA 2002/3 estimates

## 3.3 C&D WASTE ARISINGS UPDATE

The C&D waste arisings forecasts have been updated. The original report only included those wastes related to mining and quarrying and construction, based on employment numbers in these sectors. This report has used a method of applying C&D waste arisings based on population. This gives a much larger and more realistic estimate of C&D arisings in Thurrock.

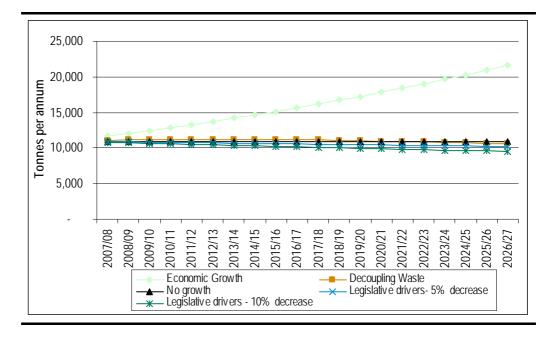
The forecasts are shown below in *Figure 3.6*. There are a range of forecasts included in this assessment for C&D waste. These largely depend on economic growth and housing growth. There are six forecasts presented, the worst case scenario, which forms the upper bound of the range, is based on housing growth plus economic growth. The best case scenario is no growth. The 'decoupling waste growth from economic growth' forecast actually leads to a lower amount by 2026/27. However, it is more prudent to look at 'no growth' as the best case scenario and thus this forms the lower bound of our range.

Figure 3.6 C&D Waste Growth Rate Scenarios



The Symonds report for 2005, where this data is taken from, provides the following split for C&D wastes managed within the Greater Essex (1):

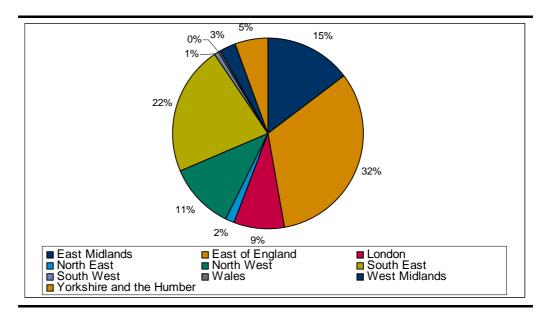
- Recycling 49%
- Landfill 29%
- Spread on exempt land 22%


These management splits are assumed to continue in the forecast period.

<sup>(1)</sup> Includes Essex, Thurrock and Southend-on-Sea

## 3.4 HAZARDOUS WASTE ARISINGS UPDATE

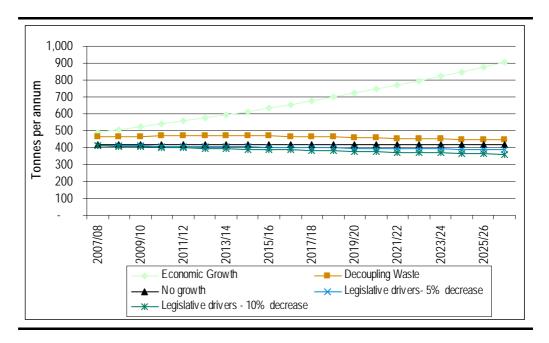
Data from the Environment Agency's Hazardous Waste Interrogator 2007 has been used to update the hazardous waste arisings section. The same growth rates as used in the original study were used. The forecasts are shown below in *Figure 3.7*.


Figure 3.7 Hazardous Waste Growth Rate Scenarios



No specific hazardous waste management capacity types are identified in this study. As such, there are no comparisons in *Section 4* for hazardous wastes. The specialist nature of hazardous waste treatment means that hazardous waste will travel greater distances to recycling/disposal destinations, if required. Destinations for the c. 11,000 tonnes of hazardous waste produced in Thurrock in 2007 are shown below. A third of the hazardous waste produced in Thurrock was treated within the East of England Region. The surrounding regions of the East Midlands and the South East of England treated over a third of the waste, leaving approximately 30% to be sent further afield for treatment.

Rwe NPower has a landfill on its site in Thurrock, this site is there to take ash from the power plant. This site does not import waste from elsewhere and simply landfills ash produced on site at the power station and therefore this void has not been included as available void for hazardous waste.


Figure 3.8 Location of Treatment of Thurrock Hazardous Waste Arisings, by Region



## 3.5 AGRICULTURAL WASTE ARISINGS

Agricultural wastes have not been updated. They form a very small amount of the overall waste stream. The forecast has been extended in line with the other waste streams. However, no changes were made to the baseline data.

Figure 3.9 Agricultural Waste Growth Rate Scenarios



These wastes are insignificantly small in comparison to MSW and C&I waste arisings, and have therefore not been included in any comparisons to available capacity.

## 4 CAPACITY DATA UPDATE

#### 4.1 Introduction

In consultation with Thurrock Council, ERM has reviewed the updated list of waste management sites. This list includes information on all sites which manage MSW, C&I waste and C&D waste arisings. No facilities were explicitly identified for the management of hazardous wastes. This review has enabled the list to be consolidated and organised in a way that maximises the use of the data available, and makes for a better estimate of current waste management capacity in Thurrock.

#### 4.2 SITE CAPACITIES

Recycling and composting capacity is provided by a small number of commercial skip operators. One operator (Nordic Recycling) has recently opened a materials recycling facility (MRF) at Tilbury Docks. However, this facility will accept wastes from London and other sources and, as such, the capacity available to Thurrock is difficult to estimate. The majority of the other recycling capacity is for the recycling of metals and end of life vehicles (ELVs). These sites are not included in the 'recycling' category as they do not offer capacity that can be used for general MSW and C&I waste and only offer a specific service. ELV facilities often have a much larger permitted capacity than is used and therefore would skew the results to be overly positive.

Treatment capacity is predominantly provided by one large facility. However, this site is solely for the combustion of used tyres and therefore offers no capacity for general MSW and C&I wastes. The remaining sites in Thurrock for 'treatment' are WEEE recycling facilities and, as such, are similar to the tyre facility, offering little or no capacity for general MSW and C&I waste. One site is included in the 'treatment' list that has no capacity data and is therefore attributed an extrapolated capacity based on the other facilities. As the 'treatment' sites are being discounted, due to their specialist nature, this site will also be given a capacity of zero. Therefore, a scenario assessing the capacity gap without these specialist facilities shows that there is no other capacity in Thurrock.

Landfill capacity has been assessed in four different scenarios. The scenarios assess the capacity that is: currently operational; currently operational but without planning permission; currently non-operational with planning permission; and potential voidspace arising from mineral extraction sites.

The tables below show the capacity for landfill and non-landfill facilities in Thurrock. These capacities are compared to the relevant arisings data in *Section 5*. The capacities are aggregated values for all sites of that type in Thurrock. Where no capacity data was available for a site, an extrapolation

was made based on the site type as to the size of that site. Data were available for between 60% and 80% of all sites.

Table 4.1 Non Landfill Capacity by Site Type (tonnes per annum)

|                    | Capacity  | No. Sites | Capacity<br>blanks | Sites with capacity | Extrapolated value |
|--------------------|-----------|-----------|--------------------|---------------------|--------------------|
| Transfer           | 55,000    | 5         | 2                  | 3                   | 91,667*            |
| Treatment          | 52,480    | 4         | 1                  | 3                   | 69,973             |
| Incinerator        | -         | 0         | 0                  | 0                   | 0                  |
| Composting         | -         | 0         | 0                  | 0                   | 0                  |
| Recycling          | 20,000    | 3         | 1                  | 2                   | 30,000             |
| Ignore             | -         | 3         | 3                  | 0                   | 0                  |
| Metal/ELV Facility | 388,163   | 7         | 0                  | 7                   | 388,163            |
| CLOSED             | -         | 0         | 0                  | 0                   | 0                  |
| C&D Recycling      | 1,325,000 | 4         | 1                  | 3                   | 1,325,000#         |

<sup>\*</sup> Part of this transfer capacity is recycling capacity and added in *Table 3.2* below

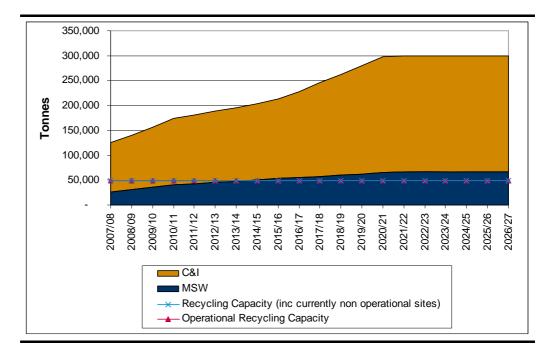
Table 4.2 Non-Landfill Capacity Table (tonnes per annum) Aggregated Capacity for Comparison with Arisings Data

|           |               | Operational | Non operational | Total (inc. currently non operational sites) |
|-----------|---------------|-------------|-----------------|----------------------------------------------|
| MSW/C&I   | Recycling*    | 48,333      | 500             | 48,833                                       |
| waste     | Recovery      | 69,973      | -               | 69,973                                       |
| C&D waste | C&D Recycling | 1,325,000   | -               | 1,325,000                                    |

<sup>\*</sup>Not including capacity at Nordic Recycling MRF, Tilbury Docks.

 Table 4.3
 Landfill Capacity Table (tonnes)

|         | Operational with p/p | Operational<br>plus w/o pp | Operational/planned | All including potential |
|---------|----------------------|----------------------------|---------------------|-------------------------|
| Non Haz | 5,600,000            | 5,600,000                  | 5,600,000           | 7,600,000               |
| Inert   | 3,830,000            | 4,230,000                  | 5,900,000           | 9,400,000               |


<sup>\*</sup>No extrapolation carried out on C&D recycling sites as these would be skewed by large wharfside facilities

#### 5.1 RSS CONFORMITY SCENARIO

## 5.1.1 Recycling and Composting

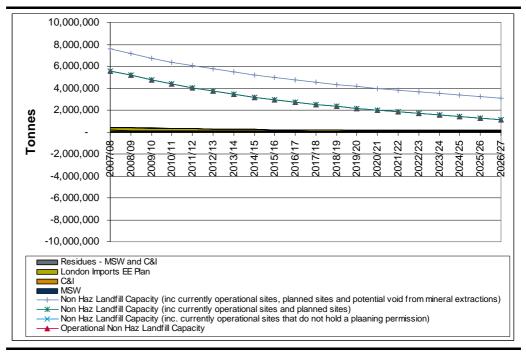
Recycling capacity versus those arisings identified in the RSS for recycling and composting shows that by 2021 there is a gap identified of up to 250,000 tonnes per annum. The recycling capacity used did not include the Nordic Recycling MRF at Tilbury Docks that could potentially take up to 100,000 tonnes of recyclable wastes, thus reducing this gap to only 150,000 tonnes per annum.

Figure 5.1 RSS Recycling Capacity Gap



## 5.1.2 Recovery

Recovery capacity is required in Thurrock of up to 90,000 tonnes in 2021. The reason the recovery requirements are slightly higher for the RSS scenario than the scenarios in *Section 3* is the fact the total recovery requirement increases to 98% under the RSS scenario, rather than allowing Thurrock to meet their LATS targets, as is the case in the other scenarios.


Figure 5.2 RSS Recovery Capacity Gap



## 5.1.3 Landfill

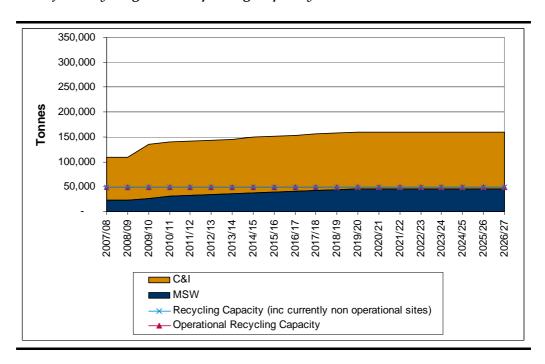
Non hazardous landfill is forecast to be sufficient to deal with the arisings forecast in the RSS, including the apportionment of London's waste to Thurrock. The importing of more waste from London than is identified in the RSS, as is the current situation, would lead to a deficit of landfill voidspace. This is discussed further in *Section 5.2.4*.

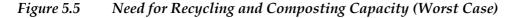
Figure 5.3 RSS Non Hazardous Landfill Capacity Gap

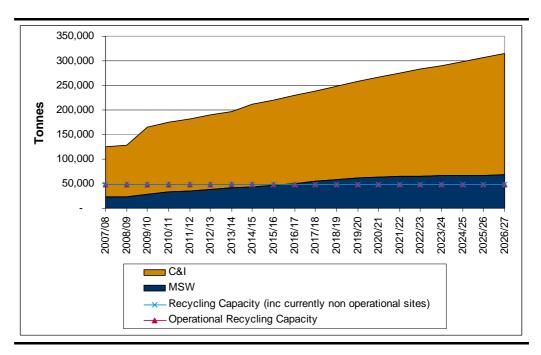


<sup>\*</sup> Three scenarios are shown on the chart as the same line, as capacity does not change between these scenarios. The only scenario with extra capacity is the scenarios including potential void from mineral extractions.

#### 5.2 ALTERNATIVE SCENARIOS


## 5.2.1 MSW and C&I Waste Recycling and Composting


The level of recycling and composting capacity currently operational, and also including that with permission that is non operational, is insufficient to deal with the waste forecast to be managed via recycling and composting in Thurrock. A best and worst case scenario has been used throughout these sections. The worst case incorporates the upper bound of both the MSW and C&I waste arisings forecasts, whilst the best case uses the combined lower bounds.


Thurrock will require a further 110,000 tonnes per annum of capacity, on top of that already provided in the year 2021 (the final year of the RSS) to deal with the forecast waste under the best case scenario. The requirement remains at 110,000 tonnes until the end of the forecasting at 2026/27. For the worst case scenario, the requirement steadily increases to 220,000 tonnes per annum in 2021, and this goes up to 270,000 tonnes per annum by the end of the forecasting period.

There are significant additional capacities required. Clearly, currently there is waste that must be being managed elsewhere, in Essex or further afield. A MRF is now operational in Thurrock (Nordic Recycling, Tilbury Docks) that is not included in the capacity level in the charts. It will accept up to 100,000 tonnes of mixed recyclables and 100,000 tonnes of paper. This capacity is not all available to Thurrock, as the facility will be accepting waste from London and other sources. However, it could potentially accept some of the recyclable MSW and C&I wastes, filling some of the gap presented below.

Figure 5.4 Need for Recycling and Composting Capacity (Best Case)







The reason the recycling requirement is slightly lower in this scenario than in the RSS scenarios (*Section 2*), is a combination of there being a slightly lower forecast of arisings of MSW and the increased level of total recovery (including recycling) of both MSW and C&I wastes.

## 5.2.2 *C&D Waste Recycling*

On the face of it, there appears to be a significant amount of C&D recycling capacity in Thurrock. However, the sites that provide >90% of this capacity are wharf-side facilities accepting dredging wastes. This capacity is not therefore available to the C&D waste market and, as such, should not be considered as appropriate for inclusion in this assessment. With these sites excluded, current capacity would be slightly insufficient for current needs although only a further 20,000 tonnes would be required in the best case scenario. A further 200,000 tonnes would be required in the worst case scenario. The 150,000 tonnes capacity is made up of two sites, one of which has no capacity data. The capacity of the site with no data has been estimated based on the other C&D recycling facility.

Figure 5.6 Need for C&D Waste Recycling Capacity (Best Case)

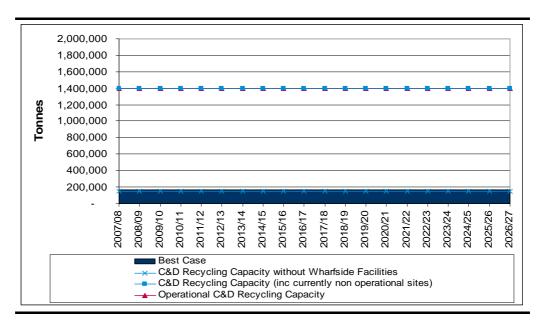
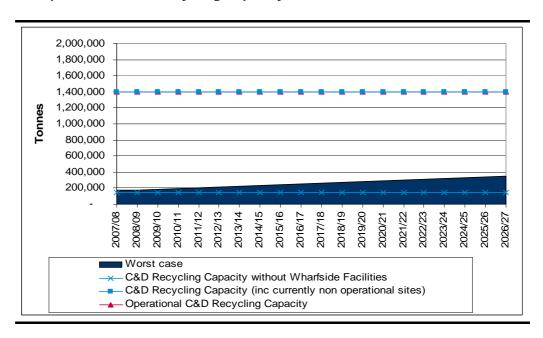




Figure 5.7 Need for C&D Waste Recycling Capacity (Worst Case)



## 5.2.3 MSW and C&I Waste Recovery

The recovery capacity figures below appear to show a current surplus when compared to need. However, the significant majority of this capacity is provided by a tyre recovery facility. This clearly does not provide recovery capacity for general MSW and C&I waste and, as such, is not compatible with the management needs of these tonnages.

Also included in the figures are WEEE facilities which offer niche capacity. The total capacity presented includes a figure for a site for which capacity data were not provided, and where capacity has been extrapolated from the capacity of the tyre plant and the WEEE sites. As such, this is not a reliable figure.

The conclusion is that, despite the existing recovery capacity, Thurrock still requires further facilities to deal with the forecast wastes requiring recovery. This is due to the unsuitability of the existing capacity. Under the worst case scenario, in the year at the end of the RSS forecast period (2021) the requirement under the best case scenario is 50,000 tonnes and under the worst case scenario it is 70,000 tonnes per annum. As the forecast continues on to 2026/27 the capacity gap grows up to 85,000 tonnes under the worst case scenario. The requirement remains at the 50,000 tonnes level under the best case scenario

Figure 5.8 Need for Recovery Capacity (Best Case)

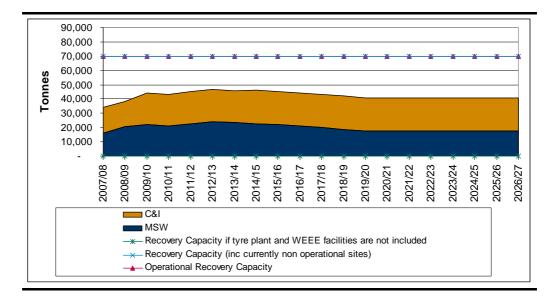
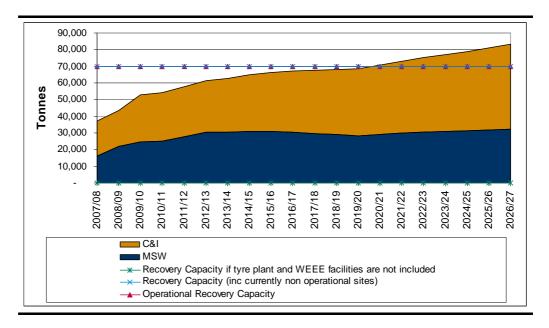




Figure 5.9 Need for Recovery Capacity (Worst Case)



## 5.2.4 Non Hazardous Landfill

There are some relatively large landfills within the Thurrock borders. These currently accept waste from London and surrounding areas. The figures below show the situation if the apportionment of London's waste is maintained at the level set out in the East of England Plan and the MSW and C&I waste arisings from Thurrock that are not recycled or recovered are sent to these landfills (see targets in *Section 3.1.1*). Also included in these charts are the residues assumed to come from 'recovery'. This is assumed to be 30% of the total sent for recovery. The figures show that, whilst the void will be depleted over time, there is sufficient available to remain in surplus up to 2027 in both the best and worst case scenarios.

Figure 5.10 Need for Non-Hazardous Landfill Capacity (Best Case)

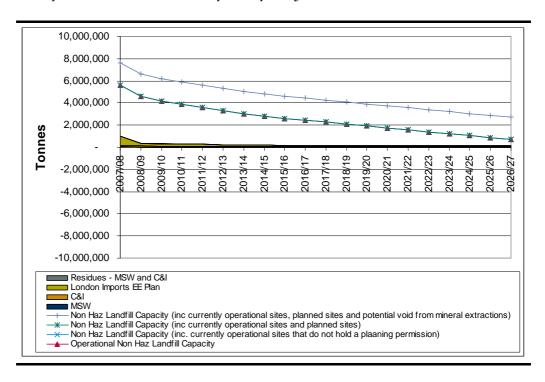
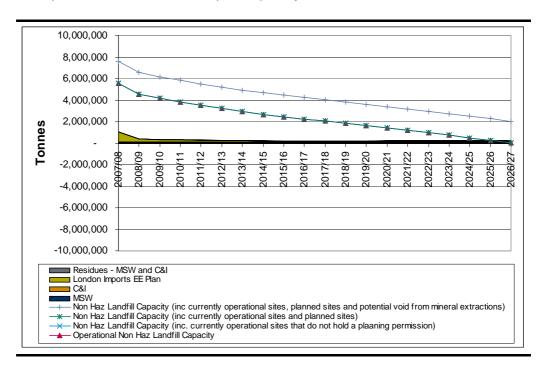




Figure 5.11 Need for Non-Hazardous Landfill Capacity (Worst Case)



However, this would seem to be an overly optimistic view, even in the worst case scenario. Thurrock landfills have actually accepted over a million tonnes of waste per annum from London in the recent past - four times the allocation for this year in the East of England Plan, at an average of 0.88 million tonnes per annum. If this rate was to continue, the remaining landfill void will be depleted very quickly indeed, reducing the time horizon for exhaustion of current void to approximately 2014.

The charts below show the difference to the results presented in *Figures 4.9* and *4.10* made by this tonnage from London, beyond Thurrock's apportionment. Should the imports continue at this rate, then a further 13 million tonnes of voidspace would be required over the forecasting period. This situation is not sustainable and unlikely to occur as it is not in accordance with the RSS. If Thurrock does continue to receive waste above the RSS levels, but lower than this 1m tonne per annum scenario, then Thurrock may still require further non hazardous landfill capacity to meets its own residue needs for landfill if there are sites available.

Figure 5.12 Need for Non-Hazardous Landfill Capacity Assuming London Imports Continue at Current Rate ~1 Million Tonnes per Annum (Best Case)

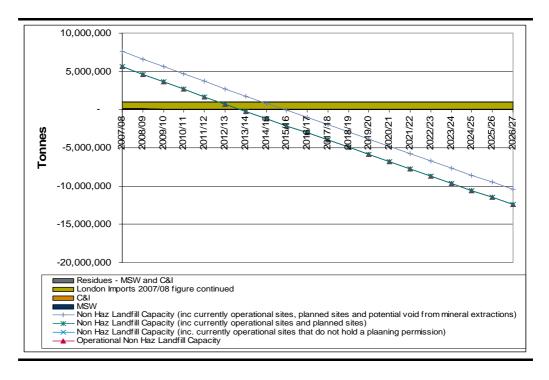
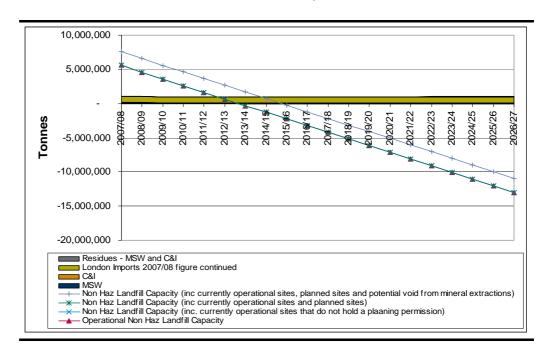




Figure 5.13 Need for Non-Hazardous Landfill Capacity Assuming London Imports Continue at Current Rate ~1 Million Tonnes per Annum (Worst Case)



## 5.2.5 Summary of Landfill Scenarios

Remaining voidspace in Thurrock is therefore sufficient to deal with the forecast imports of waste from London in the RSS. This is despite the fact that Thurrock has already landfilled the cumulative total of all of their apportionment of London's waste (2006-2021) in the past three years. The sites available for landfilling of London's waste (Mucking and Ockenden) will continue to take this waste, whilst Ockenden has potential to provide voidspace for Thurrock's waste in the future. If London continues to export more waste to Thurrock than is apportioned to them in the RSS, then Thurrock may require the extra potential landfill void in the charts above, or have a need for further non-landfill capacity to deal with the waste, preserving landfill for the disposal of residues.

## 5.2.6 Inert Landfill

There are over 3.8 million tonnes of voidspace in Thurrock. The figures below clearly show that this void is more than sufficient to deal with the forecast arisings that are assumed not to be sent to be sent for recycling.

There is a large amount of 'potential' void recorded in Thurrock. As the forecasts stand, this wouldn't be required over the forecasting period. However, this is only the case if only C&D wastes from Thurrock are sent there. In reality, there may be wastes from London, Essex and further afield being consigned to inert landfills in Thurrock.

Figure 5.14 Need for Inert Landfill Capacity (Best Case)

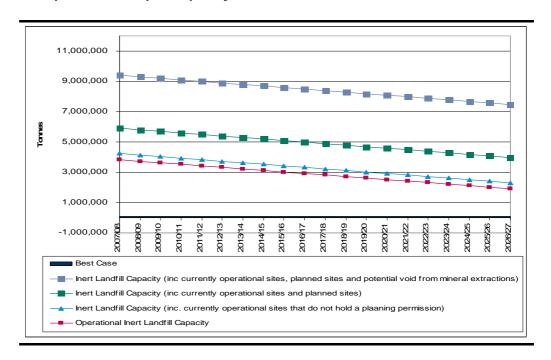
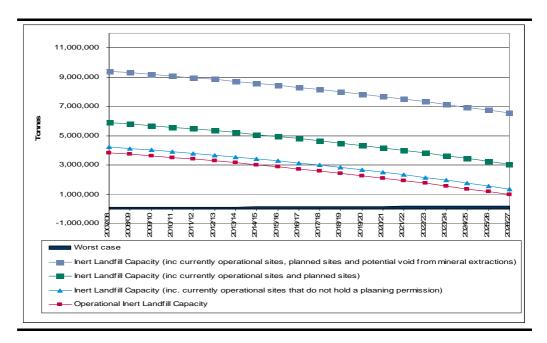




Figure 5.15 Need for Inert Landfill Capacity (Worst Case)



## 6 C&I WASTE MANAGEMENT METHOD VARIATION

## 6.1 Introduction

This section assesses the impact of changing the assumption of the amount of waste sent to recycling and recovery. The current assumptions are as follows:

Table 6.1 C&I Waste Management Methods - Current Assumptions

|             |                | Total R    | Landfill  |     |  |
|-------------|----------------|------------|-----------|-----|--|
|             |                | Recycling  | Recycling |     |  |
|             |                | and        | Other     |     |  |
|             |                | Composting | Recovery  |     |  |
|             | 2009           | 57         | 7%        | 43% |  |
|             | Proportion of  |            |           |     |  |
|             | Total Recovery | 83%        | 17%       |     |  |
|             | 2010           | 72%        |           | 28% |  |
|             | Proportion of  |            |           |     |  |
| DCC T       | Total Recovery | 83%        | 17%       |     |  |
| RSS Targets | 2015           | 75%        |           | 25% |  |
|             | Proportion of  |            |           |     |  |
|             | Total Recovery | 83%        | 17%       |     |  |

Two scenarios have been forecast assuming higher rates of 'other recovery' than the 17% currently forecast. These are detailed in the following sections.

## 6.2 SCENARIO 1 - 50/50 SPLIT (RSS)

An assumption of a 50/50 split between recycling/composting and other recovery leads to the following results using the RSS Conformity figures from *Section 2*.

Figure 6.1 Need for Recycling and Composting Capacity - New C&I Waste Management Method Assumption 50/50 Split (RSS Conformity)

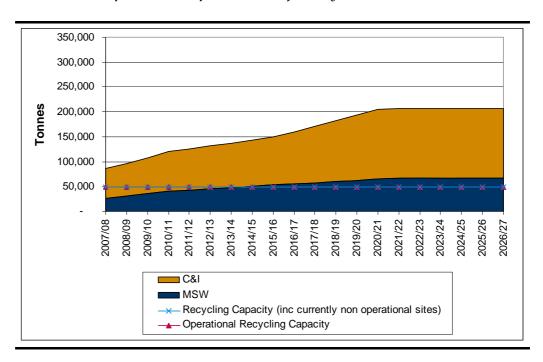
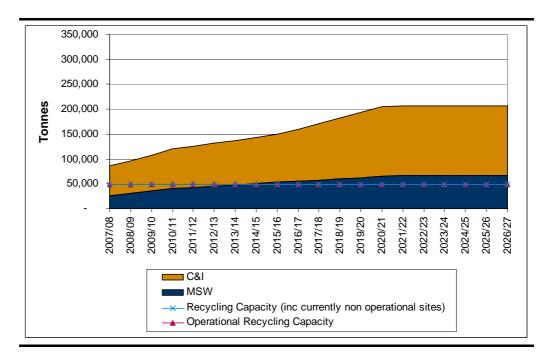
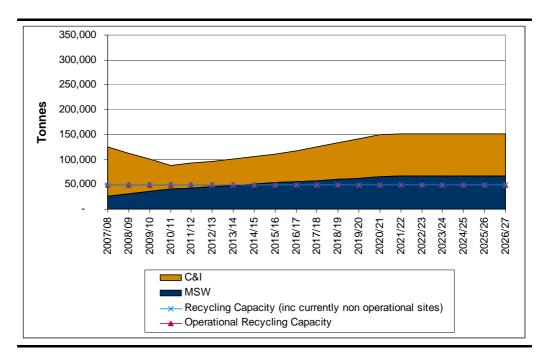




Figure 6.2 Need for Recovery Capacity - New C&I Waste Management Method Assumption 50/50 Split (RSS Conformity)




## 6.3 SCENARIO 2 70/30 SPLIT (RSS)

An assumption of a 70/30 split in favour of other recovery, between recycling/composting and other recovery leads to the following results using the RSS Conformity figures from *Section 2*.

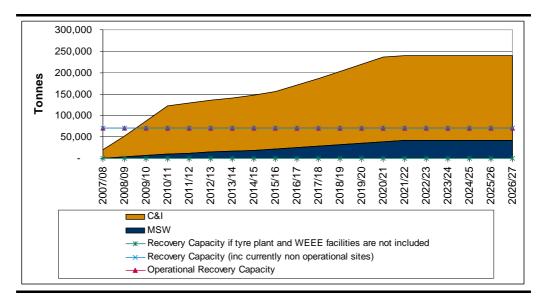

The need for recycling and composting capacity is 150,000 tonnes in total by 2026/27. Assuming 50,000 tonnes is currently available a further 100,000 tonnes is required by 2020/21, this requirement continues until 2026/27.

Figure 6.3 Need for Recycling and Composting Capacity - New C&I Waste Management Method Assumption 70/30 Split (RSS Conformity)



The need for recovery capacity is up to 240,000 tonnes in 2020/21, the requirement continues at the same level up to the end of the forecast at 2026/27.

Figure 6.4 Need for Recovery Capacity - New C&I Waste Management Method Assumption 70/30 Split (RSS Conformity)



## 6.4 SCENARIO 1 – 50/50 SPLIT (OTHER FORECASTS)

This section shows the results for this alternative split of recovery and recycling and composting using the best and worst case scenarios identified in *Section 3*.

The estimated capacity gap for recycling and composting reduces to between 65,000 tpa and 140,000 tpa in 2021, and between 65,000 tpa and 170,000 tpa in 2027. As in *Section 5* some of this gap could be provided for by the Nordic Recycling facility. These results are shown in the charts below and the tables containing these data are in *Annex D*.

Figure 6.5 Need for Recycling and Composting Capacity - New C&I Waste Management Method Assumption 50/50 Split (Best Case)

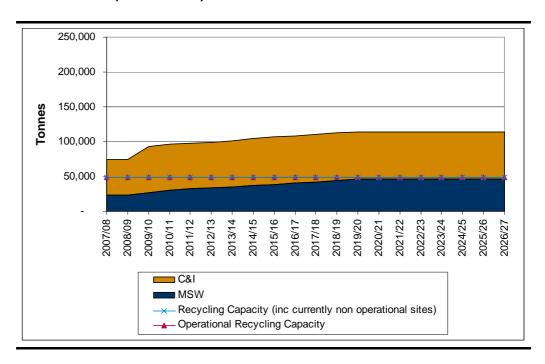
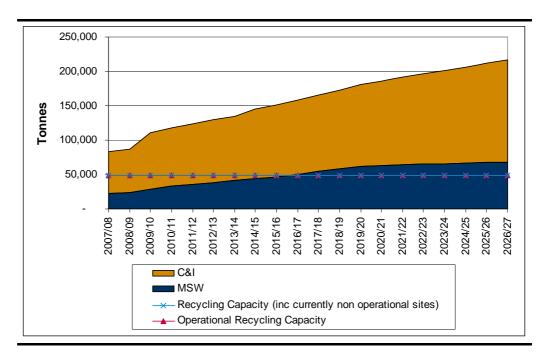




Figure 6.6 Need for Recycling and Composting Capacity - New C&I Waste Management Method Assumption 50/50 Split (Worst Case)



The recovery capacity gap alters providing an increased need for recovery capacity of between 85,000 tpa and 150,000 tpa in 2021 and between 85,000 tpa and 180,000 tpa in 2027. These results are shown in the charts below and the tables containing these data are in *Annex D*.

Figure 6.7 Need for Recovery Capacity - New C&I Waste Management Method Assumption 50/50 Split (Best Case)

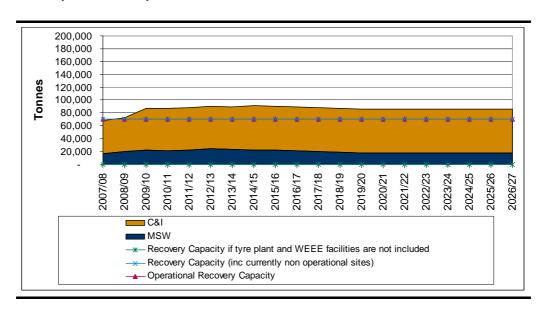
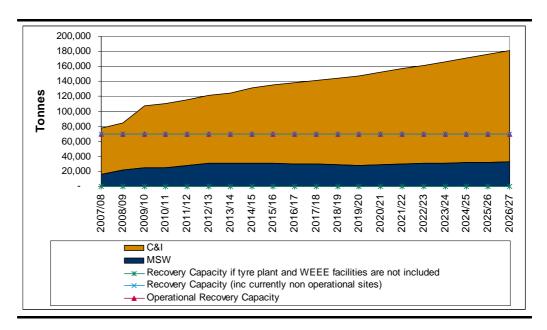




Figure 6.8 Need for Recovery Capacity - New C&I Waste Management Method Assumption 50/50 Split (Worst Case)



#### 6.5 SCENARIO 2 – 70/30 SPLIT (OTHER FORECASTS)

This section shows the results for this alternative split of recovery and recycling and composting using the best and worst case scenarios identified in *Section 3*.

The estimated capacity gap for recycling and composting reduces to between 40,000 tpa and 90,000 tpa in 2021, and between 40,000 tpa and 110,000 tpa in 2027. As in *Section 4* some of this gap could be provided for by the Nordic Recycling facility. These results are shown in the charts below and the tables containing these data are in *Annex D*.

Figure 6.9 Need for Recycling and Composting Capacity - New C&I Waste Management Method Assumption 70/30 Split (Best Case)

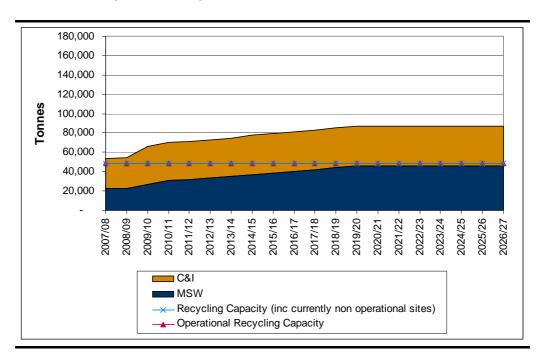
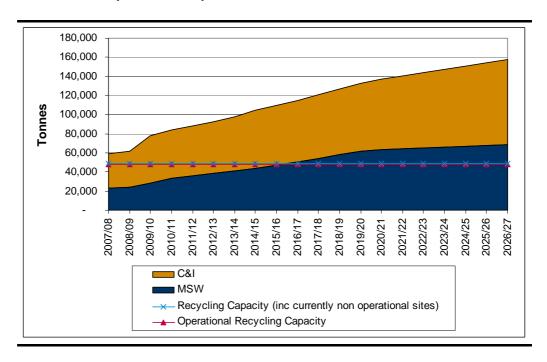




Figure 6.10 Need for Recycling and Composting Capacity - New C&I Waste Management Method Assumption 70/30 Split (Worst Case)



The recovery capacity gap now shows an increased need for recovery capacity of between 115,000 tpa and 200,000 tpa in 2021 and between 115,000 tpa and 240,000 tpa in 2027. These results are shown in the charts below and the tables containing these data are in  $Annex\ D$ .

Figure 6.11 Need for Recovery Capacity - New C&I Waste Management Method Assumption 70/30 Split (Best Case)

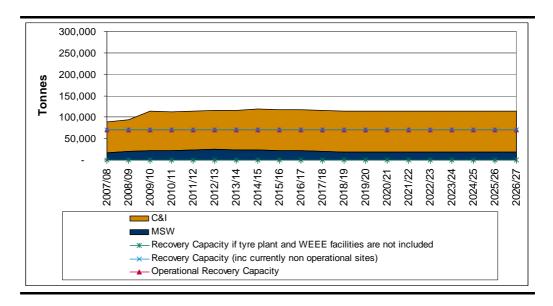
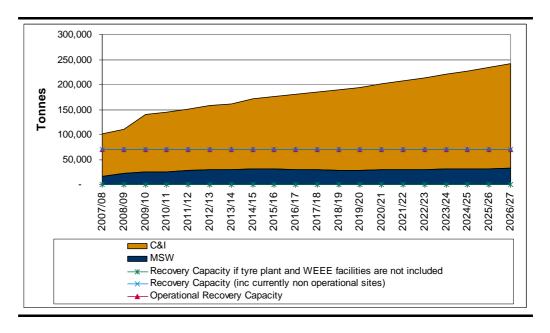




Figure 6.12 Need for Recovery Capacity - New C&I Waste Management Method Assumption 70/30 Split (Worst Case)



Tables

The corresponding tables for the charts above can be found *Annex D*.

#### **CONCLUSIONS**

7

Thurrock has little in the way of non-landfill capacity that is not providing a specialist service. Consequently, Thurrock sites are in high demand providing niche market capacity. A greater quantity of general recycling/composting and recovery capacity is required, with estimates of the need ranging between 120,000 to 280,000 tonnes per annum for MSW and C&I waste.

Some of this capacity has been provided by the MRF at Tilbury Docks that has recently become operational. However, this site is a merchant facility and accepts wastes from elsewhere, such that not all of the capacity is available to Thurrock. The need for MSW and C&I waste recovery capacity is between 50,000 and 85,000 tonnes. For C&D waste recycling, the need is for between 100,000 to 300,000 tonnes of capacity.

There is a greater availability of landfill capacity in Thurrock. However, currently the use of this capacity is not in line with the forecasts in this report, with more non-hazardous MSW and C&I waste being sent to Thurrock landfills from London than the agreed apportionments. Consequently, the rate of depletion is considerably greater than forecast.

If the rate of depletion is brought into line with the forecasts in this report and the East of England Plan, then the current void will be sufficient to take all the waste required until beyond 2027. However, should the current rates of import from London continue, void will be exhausted by 2014. Inert landfill will not be exhausted over the forecasting period, assuming that the forecast levels of C&D waste are managed in the way expressed in the Symonds report from 2005. This shows that currently 30% of inert waste is landfilled.

Comparisons have been made using the figures set out in the East of England Plan. These show a slightly greater need for recycling capacity (c.30,000 tonnes per annum) and recovery capacity (c.15,000 tonnes per annum) by 2021. This is due in part to an increased forecast of MSW, but also to the assumption that 98% of wastes will be recovered.

Also assessed above are the impacts associated with a change in the proportion of C&I waste sent for recycling and recovery. The current split of recycling/composting and recovery is 83/17 in favour of recycling. This could be seen to be high in favour of recycling and thus the assessment was carried out to alter this. When the proportion is changed to a 50/50 split, the requirement for extra recycling/composting capacity reduces to between 65,000 tpa and 137,000 tpa in 2021, and between 65,000 tpa and 170,000 tpa in 2027. Conversely the requirement for recovery increases to between 85,000 tpa and 150,000 tpa in 2021, and between 85,000 tpa and 180,000 tpa in 2027. Assuming a higher split in favour of recovery (70/30) results in a higher need for extra recovery capacity of between 115,000 tpa and 200,000 tpa in 2021, and between 115,000 tpa and 240,000 tpa in 2027, whilst recycling/composting is

reduced to between 86,000 tpa and 137,000 tpa in 2021, and between 86,000 tpa and 157,000 tpa in 2027.

These results and conclusions are based on a number of assumptions. Two of the major assumptions have been tested through a sensitivity analysis to assess their impact on the overall results.

Economic growth has an impact on the forecast levels of the two largest waste streams, C&I and C&D wastes. The current economic downturn that is being experienced in the UK and globally presents us with much lower levels of economic growth than had been experienced, and that were previously used to forecast future waste arisings. ERM has carried out a crude sensitivity test to assess the effects of a reduction from a 3.3% rate of economic growth to a 1% rate of economic growth.

Also tested in the sensitivity analysis is the most recent C&I waste arisings data. The most commonly used data for C&I waste arisings come from the 2002/3 Strategic Waste Management Assessment (SWMA) carried out by the Environment Agency. Clearly this is now an old data set, and more recent data has been sought. A study has been carried out by ADAS for the East of England Regional Assembly, which extrapolates from a survey carried out in the North West by Urban Mines. The data for Thurrock in this report have been used as the basis for a sensitivity analysis.

The Urban Mines report acknowledges the limitations of the method used and suggests that caution is used when using the sub-regional level data. The data for Thurrock is highly uncertain, and thus the results of this sensitivity analysis should be regarded as providing only a useful indication of potential variability. ERM is sceptical both as to the accuracy of the original survey in the North West and as to the process of extrapolation.

#### 7.1 SENSITIVITY ANALYSES

#### 7.1.1 Lower Economic Growth Rate

By reducing the forecast economic growth rate, the upper bound for the C&I and C&D waste streams is reduced. These growth charts are shown below. For C&I waste, the RSS growth rate is now worse than the economic growth rate. This is expected, as the RSS growth rate forecasts are at a higher rate, broadly consistent with the previous forecasts. They run to 2021, with a 0% annual growth rate assumed thereafter.

Figure 7.1 C&I Waste Growth Rates Scenarios With New Economic Growth Rate Assumption (1%)

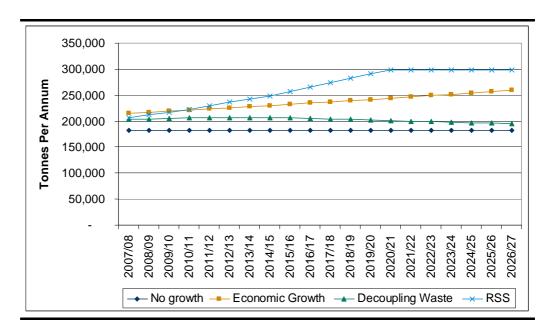
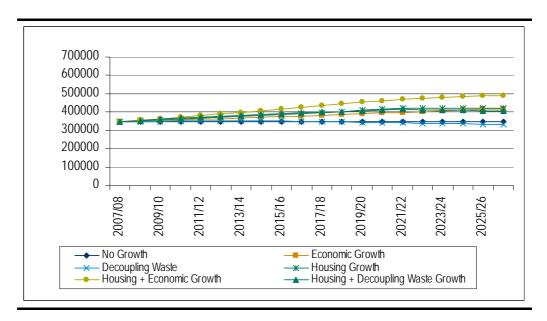




Figure 7.2 C&D Waste Growth Rates Scenarios With New Economic Growth Rate Assumption (1%)



The effects of these reductions in growth rates are shown graphically below. Only the worst case scenarios are affected by the change, and therefore they are the only charts presented below. There is a forecast need for 190,000 tonnes per annum of recycling and composting capacity by 2026/27. Extra C&D recycling capacity is also required, if the wharfside facilities are ignored, as before. The amount needed is almost 200,000 tonnes per annum. The need for recovery capacity, assuming the tyre facility and the WEEE facilities are excluded, is 70,000 tonnes per annum. Non-hazardous landfill remains in surplus under this new scenario, as does inert landfill.

Figure 7.3 Need for Recycling and Composting Capacity for MSW and C&I Waste - Worst Case Scenario (New Data)

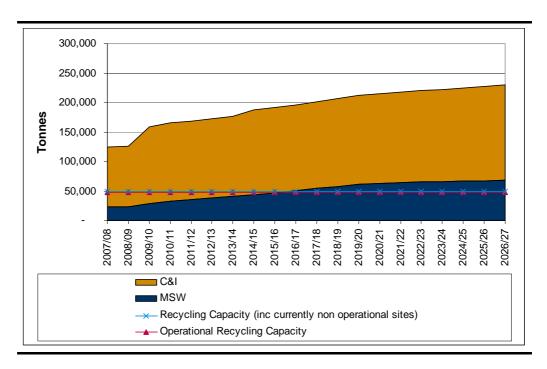



Figure 7.4 Need for C&D Waste Recycling Capacity - Worst Case Scenario (New Data)

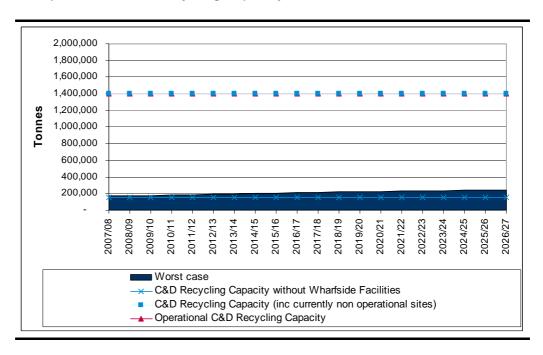



Figure 7.5 Need for Recovery Capacity for MSW and C&I Waste - Worst Case Scenario (New Data)

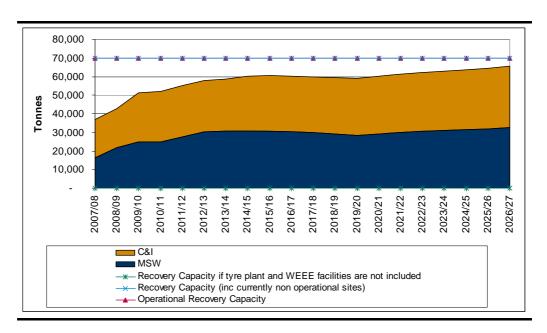



Figure 7.6 Need for Non-Hazardous Landfill Capacity for MSW and C&I Waste - Worst Case Scenario (New Data)

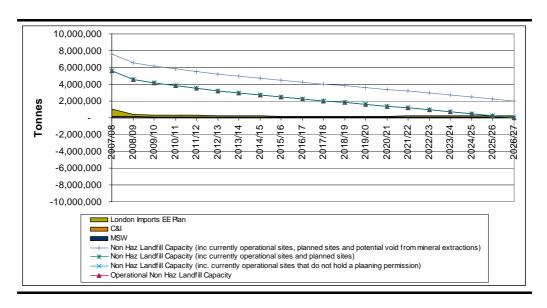
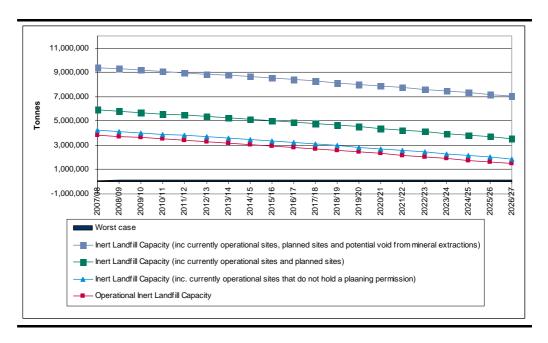
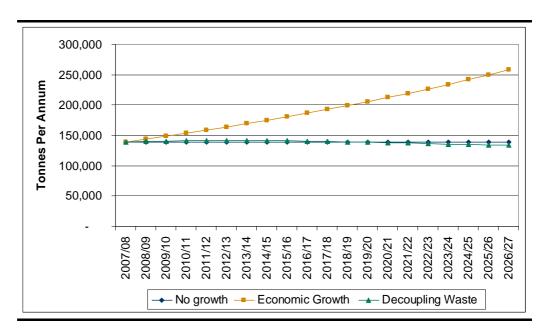




Figure 7.7 Need for Inert Landfill Capacity for C&D Waste - Worst Case Scenario (New Data)




#### 7.1.2 New C&I Waste Baseline Data

The recent study into C&I waste arisings suggests that arisings in Thurrock are slightly lower than those used above, which are drawn from the 2002/03 SWMA. Therefore, forecasts of waste arisings and the infrastructure required to deal with it, are both lowere.

New growth forecasts are presented below. The worst case (economic growth) scenario now forecasts slightly more than 250,000 tonnes in 2026/27.

Figure 7.8 C&I Waste Growth Rates Scenarios Assuming New C&I Waste Baseline Data



The effects on the capacity gap calculations are shown below. For the worst case scenario, recycling capacity required is now 180,000 tonnes per annum in 2026/27. For the best case scenario, it is 85,000 tonnes per annum. The requirement for recovery capacity is 65,000 tonnes per annum in 2026/27 for the worst case scenario, and 35,000 tonnes per annum for the best case scenario. Current non-hazardous landfill capacity is sufficient to deal with the forecast arisings until beyond the forecasting period.

Figure 7.9 Need for Recycling and Composting Capacity for MSW and C&I Waste - Worst Case Scenario (New Data)

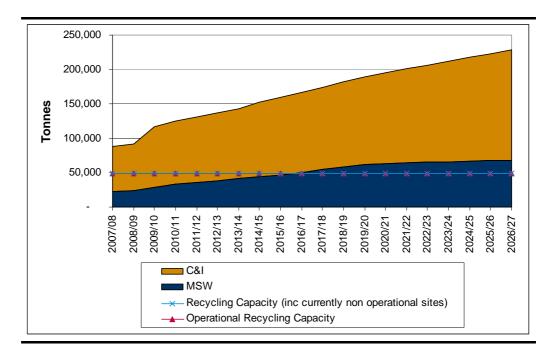



Figure 7.10 Need for Recycling and Composting Capacity for MSW and C&I Waste - Best Case Scenario (New Data)

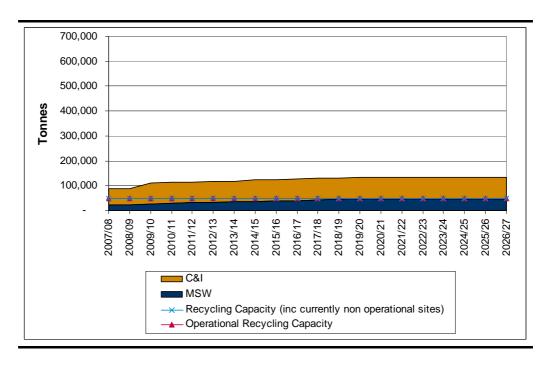



Figure 7.11 Need for Recovery Capacity for MSW and C&I Waste - Worst Case Scenario (New Data)

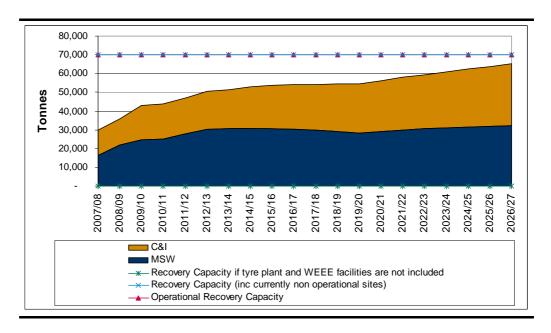



Figure 7.12 Need for Recovery Capacity for MSW and C&I Waste - Best Case Scenario (New Data)

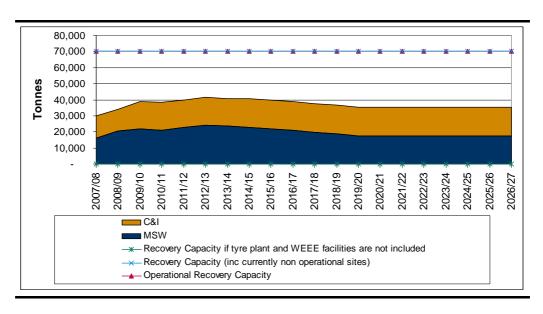



Figure 7.13 Need for Non-Hazardous Landfill Capacity for MSW and C&I Waste - Worst Case Scenario (New Data)

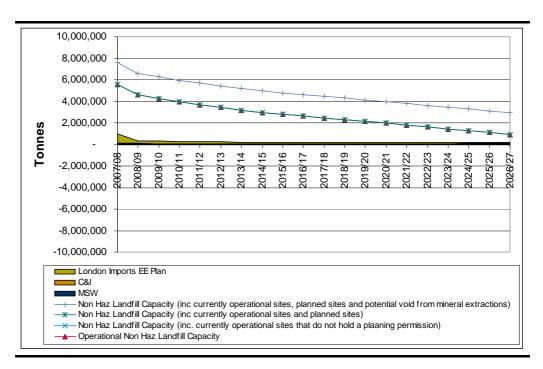



Figure 7.14 Need for Non-Hazardous Landfill Capacity for MSW and C&I Waste - Best Case Scenario (New Data)



#### Annex A

## Waste Arisings

#### A1 WASTE ARISINGS

## A1.1 MSW

The table below are the estimates for MSW over the forecast period. \\

Table 1.1 MSW Forecasts

|         | Growth         |        |        | Housin  |        |         |          | Extended  |
|---------|----------------|--------|--------|---------|--------|---------|----------|-----------|
|         | over 6 year    |        | Housin | g +     |        |         |          | Housing + |
|         | period         | No     | g      | Current | MWMS   | RSS     | Extended | Current   |
|         | 2002-2008      | growth | Growth | Growth  | Growth | Growth  | Housing  | Growth    |
| 2007/08 | 76,621         | 76,621 | 76,621 | 76,621  | 76,621 | 90,000  | 76,621   | 76,621    |
| 2008/09 | <i>77,</i> 595 | 76,621 | 77,778 | 78,752  | 77,595 | 93,000  | 77,778   | 78,752    |
| 2009/10 | 78,581         | 76,621 | 78,935 | 80,895  | 78,581 | 97,000  | 78,935   | 80,895    |
| 2010/11 | 79,580         | 76,621 | 80,092 | 83,050  | 79,367 | 101,000 | 80,092   | 83,050    |
| 2011/12 | 80,591         | 76,621 | 81,249 | 85,219  | 80,161 | 101,000 | 81,249   | 85,219    |
| 2012/13 | 81,615         | 76,621 | 82,406 | 87,400  | 80,962 | 102,000 | 82,406   | 87,400    |
| 2013/14 | 82,652         | 76,621 | 83,563 | 89,594  | 81,772 | 103,000 | 83,563   | 89,594    |
| 2014/15 | 83,703         | 76,621 | 84,719 | 91,801  | 82,589 | 105,000 | 84,719   | 91,801    |
| 2015/16 | 84,766         | 76,621 | 85,876 | 94,022  | 83,002 | 106,000 | 85,876   | 94,022    |
| 2016/17 | 85,844         | 76,621 | 87,033 | 96,256  | 83,417 | 107,000 | 87,033   | 96,256    |
| 2017/18 | 86,935         | 76,621 | 88,190 | 98,504  | 83,834 | 108,000 | 88,190   | 98,504    |
| 2018/19 | 88,039         | 76,621 | 89,347 | 100,765 | 84,254 | 109,000 | 89,347   | 100,765   |
| 2019/20 | 89,158         | 76,621 | 90,504 | 103,041 | 84,254 | 110,000 | 90,504   | 103,041   |
| 2020/21 | 90,291         | 76,621 | 91,661 | 105,331 | 84,254 | 111,000 | 91,661   | 105,331   |
| 2021/22 | 91,439         | 76,621 | 92,818 | 107,635 | 84,254 | 111,000 | 92,818   | 107,635   |
| 2022/23 | 92,601         | 76,621 | 92,818 | 108,797 | 84,254 | 111,000 | 93,975   | 109,954   |
| 2023/24 | 93,778         | 76,621 | 92,818 | 109,974 | 84,254 | 111,000 | 95,131   | 112,288   |
| 2024/25 | 94,969         | 76,621 | 92,818 | 111,166 | 84,254 | 111,000 | 96,288   | 114,637   |
| 2025/26 | 96,176         | 76,621 | 92,818 | 112,373 | 84,254 | 111,000 | 97,445   | 117,000   |
| 2026/27 | 97,399         | 76,621 | 92,818 | 113,595 | 84,254 | 111,000 | 98,602   | 119,379   |

#### A1.2 C&I WASTE

The table below are the estimates for C&I waste over the forecast period.

Table 1.2C&I Waste Forecasts

|         |           | Economic | Decoupling |         |
|---------|-----------|----------|------------|---------|
|         | No growth | Growth   | Waste      | RSS     |
| 2007/08 | 182,341   | 214,479  | 203,009    | 207,000 |
| 2008/09 | 182,341   | 221,557  | 204,024    | 212,000 |
| 2009/10 | 182,341   | 228,868  | 205,045    | 217,000 |
| 2010/11 | 182,341   | 236,421  | 206,070    | 223,000 |
| 2011/12 | 182,341   | 244,223  | 206,070    | 230,000 |
| 2012/13 | 182,341   | 252,282  | 206,070    | 236,000 |
| 2013/14 | 182,341   | 260,607  | 206,070    | 242,000 |
| 2014/15 | 182,341   | 269,207  | 206,070    | 248,000 |
| 2015/16 | 182,341   | 278,091  | 206,070    | 257,000 |
| 2016/17 | 182,341   | 287,268  | 205,039    | 265,000 |
| 2017/18 | 182,341   | 296,748  | 204,014    | 274,000 |
| 2018/19 | 182,341   | 306,541  | 202,994    | 282,000 |
| 2019/20 | 182,341   | 316,657  | 201,979    | 291,000 |
| 2020/21 | 182,341   | 327,106  | 200,969    | 299,000 |
| 2021/22 | 182,341   | 337,901  | 199,965    | 299,000 |
| 2022/23 | 182,341   | 349,052  | 198,965    | 299,000 |
| 2023/24 | 182,341   | 360,570  | 197,970    | 299,000 |
| 2024/25 | 182,341   | 372,469  | 196,980    | 299,000 |
| 2025/26 | 182,341   | 384,761  | 195,995    | 299,000 |
| 2026/27 | 182,341   | 397,458  | 195,015    | 299,000 |

## A1.3 C&D WASTE

The table below are the estimates for C&D waste over the forecast period.

Table 1.3C&D Waste Forecasts

|         | No Growth | Economic<br>Growth | Decoupling<br>Waste | Housing<br>Growth | Housing +<br>Economic<br>Growth | Housing + Decoupling Waste Growth |
|---------|-----------|--------------------|---------------------|-------------------|---------------------------------|-----------------------------------|
| 2007/08 | 346,253   | 346,253            | 346,253             | 346,253           | 346,253                         | 346,253                           |
| 2008/09 | 346,253   | 357,679            | 347,984             | 351,481           | 362,907                         | 353,212                           |
| 2009/10 | 346,253   | 369,483            | 349,724             | 356,709           | 379,939                         | 360,180                           |
| 2010/11 | 346,253   | 381,676            | 351,473             | 361,937           | 397,360                         | 367,157                           |
| 2011/12 | 346,253   | 394,271            | 351,473             | 367,165           | 415,183                         | 372,385                           |
| 2012/13 | 346,253   | 407,282            | 351,473             | 372,393           | 433,422                         | 377,613                           |
| 2013/14 | 346,253   | 420,722            | 351,473             | 377,621           | 452,090                         | 382,841                           |
| 2014/15 | 346,253   | 434,606            | 351,473             | 382,849           | 471,202                         | 388,069                           |
| 2015/16 | 346,253   | 448,948            | 351,473             | 388,077           | 490,772                         | 393,297                           |
| 2016/17 | 346,253   | 463,763            | 349,715             | 393,305           | 510,815                         | 396,767                           |
| 2017/18 | 346,253   | 479,067            | 347,967             | 398,533           | 531,348                         | 400,247                           |
| 2018/19 | 346,253   | 494,877            | 346,227             | 403,761           | 552,385                         | 403,735                           |
| 2019/20 | 346,253   | 511,208            | 344,496             | 408,989           | 573,944                         | 407,232                           |
| 2020/21 | 346,253   | 528,077            | 342,773             | 414,217           | 596,042                         | 410,737                           |
| 2021/22 | 346,253   | 545,504            | 341,059             | 419,445           | 618,696                         | 414,252                           |
| 2022/23 | 346,253   | 563,506            | 339,354             | 419,445           | 636,698                         | 412,546                           |
| 2023/24 | 346,253   | 582,101            | 337,657             | 419,445           | 655,293                         | 410,850                           |
| 2024/25 | 346,253   | 601,311            | 335,969             | 419,445           | 674,503                         | 409,161                           |
| 2025/26 | 346,253   | 621,154            | 334,289             | 419,445           | 694,346                         | 407,481                           |
| 2026/27 | 346,253   | 641,652            | 332,618             | 419,445           | 714,844                         | 405,810                           |

#### A1.4 HAZARDOUS WASTE

The table below are the estimates for hazardous waste over the forecast period.

Table 1.4 Hazardous Waste Forecasts

|         | Economic | Decoupling |           | Legislative<br>drivers- 5% | Legislative<br>drivers - 10% |
|---------|----------|------------|-----------|----------------------------|------------------------------|
| ·-      | Growth   | Waste      | No growth | decrease                   | decrease                     |
| 2007/08 | 11,683   | 11,058     | 10,948    | 10,875                     | 10,803                       |
| 2008/09 | 12,068   | 11,113     | 10,948    | 10,839                     | 10,731                       |
| 2009/10 | 12,466   | 11,169     | 10,948    | 10,803                     | 10,659                       |
| 2010/11 | 12,878   | 11,225     | 10,948    | 10,767                     | 10,588                       |
| 2011/12 | 13,303   | 11,225     | 10,948    | 10,731                     | 10,517                       |
| 2012/13 | 13,742   | 11,225     | 10,948    | 10,695                     | 10,447                       |
| 2013/14 | 14,195   | 11,225     | 10,948    | 10,660                     | 10,378                       |
| 2014/15 | 14,664   | 11,225     | 10,948    | 10,624                     | 10,308                       |
| 2015/16 | 15,148   | 11,225     | 10,948    | 10,589                     | 10,240                       |
| 2016/17 | 15,647   | 11,168     | 10,948    | 10,553                     | 10,171                       |
| 2017/18 | 16,164   | 11,113     | 10,948    | 10,518                     | 10,104                       |
| 2018/19 | 16,697   | 11,057     | 10,948    | 10,483                     | 10,036                       |
| 2019/20 | 17,248   | 11,002     | 10,948    | 10,448                     | 9,969                        |
| 2020/21 | 17,817   | 10,947     | 10,948    | 10,413                     | 9,903                        |
| 2021/22 | 18,405   | 10,892     | 10,948    | 10,379                     | 9,837                        |
| 2022/23 | 19,013   | 10,838     | 10,948    | 10,344                     | 9,771                        |
| 2023/24 | 19,640   | 10,783     | 10,948    | 10,309                     | 9,706                        |
| 2024/25 | 20,288   | 10,729     | 10,948    | 10,275                     | 9,641                        |
| 2025/26 | 20,958   | 10,676     | 10,948    | 10,241                     | 9,577                        |
| 2026/27 | 21,649   | 10,622     | 10,948    | 10,207                     | 9,513                        |

#### A1.5 AGRICULTURAL WASTE

The table below are the estimates for agricultural waste over the forecast period.

Table 1.5 Agricultural Waste Forecasts

|         | Economic<br>Growth | Decoupling<br>Waste | No growth | Legislative drivers-<br>5% decrease | Legislative<br>drivers - 10%<br>decrease |
|---------|--------------------|---------------------|-----------|-------------------------------------|------------------------------------------|
| 2007/08 | 489                | 463                 | 415       | 413                                 | 410                                      |
| 2008/09 | 505                | 465                 | 415       | 411                                 | 407                                      |
| 2009/10 | 521                | 467                 | 415       | 410                                 | 404                                      |
| 2010/11 | 539                | 469                 | 415       | 409                                 | 402                                      |
| 2011/12 | 556                | 469                 | 415       | 407                                 | 399                                      |
| 2012/13 | 575                | 469                 | 415       | 406                                 | 396                                      |
| 2013/14 | 594                | 469                 | 415       | 404                                 | 394                                      |
| 2014/15 | 613                | 469                 | 415       | 403                                 | 391                                      |
| 2015/16 | 634                | 469                 | 415       | 402                                 | 389                                      |
| 2016/17 | 654                | 467                 | 415       | 400                                 | 386                                      |
| 2017/18 | 676                | 465                 | 415       | 399                                 | 383                                      |
| 2018/19 | 698                | 462                 | 415       | 398                                 | 381                                      |
| 2019/20 | 721                | 460                 | 415       | 396                                 | 378                                      |
| 2020/21 | 745                | 458                 | 415       | 395                                 | 376                                      |
| 2021/22 | 770                | 456                 | 415       | 394                                 | 373                                      |
| 2022/23 | 795                | 453                 | 415       | 393                                 | 371                                      |
| 2023/24 | 821                | 451                 | 415       | 391                                 | 368                                      |
| 2024/25 | 849                | 449                 | 415       | 390                                 | 366                                      |
| 2025/26 | 877                | 447                 | 415       | 389                                 | 363                                      |
| 2026/27 | 906                | 444                 | 415       | 387                                 | 361                                      |

#### Annex B

## Arisings vs Capacity

#### B1.1 RECYCLING

The assumed operational recycling capacity figure for recycling is 48,333. The recycling capacity including the current non operational sites is 48,333.

Table 1.1 Recycling Arisings vs Capacity

|         | M         | SW         | С         | &I         | To        | otal       |
|---------|-----------|------------|-----------|------------|-----------|------------|
|         | Best Case | Worst case | Best Case | Worst case | Best Case | Worst case |
| 2007/08 | 22,720    | 22,720     | 86,265    | 101,470    | 108,985   | 124,190    |
| 2008/09 | 22,986    | 23,626     | 86,265    | 104,819    | 109,252   | 128,444    |
| 2009/10 | 26,817    | 28,313     | 108,967   | 136,772    | 135,784   | 165,085    |
| 2010/11 | 30,648    | 33,220     | 108,967   | 141,285    | 139,615   | 174,505    |
| 2011/12 | 32,181    | 35,792     | 108,967   | 145,947    | 141,148   | 181,739    |
| 2012/13 | 33,713    | 38,456     | 108,967   | 150,764    | 142,680   | 189,220    |
| 2013/14 | 35,246    | 41,213     | 108,967   | 155,739    | 144,212   | 196,952    |
| 2014/15 | 36,778    | 44,064     | 113,507   | 167,582    | 150,285   | 211,646    |
| 2015/16 | 38,311    | 47,011     | 113,507   | 173,112    | 151,818   | 220,123    |
| 2016/17 | 40,226    | 50,534     | 113,507   | 178,824    | 153,733   | 229,359    |
| 2017/18 | 42,142    | 54,177     | 113,507   | 184,726    | 155,649   | 238,903    |
| 2018/19 | 44,057    | 57,940     | 113,507   | 190,822    | 157,564   | 248,762    |
| 2019/20 | 45,973    | 61,825     | 113,507   | 197,119    | 159,480   | 258,943    |
| 2020/21 | 45,973    | 63,199     | 113,507   | 203,624    | 159,480   | 266,822    |
| 2021/22 | 45,973    | 64,581     | 113,507   | 210,343    | 159,480   | 274,924    |
| 2022/23 | 45,973    | 65,278     | 113,507   | 217,285    | 159,480   | 282,563    |
| 2023/24 | 45,973    | 65,984     | 113,507   | 224,455    | 159,480   | 290,439    |
| 2024/25 | 45,973    | 66,700     | 113,507   | 231,862    | 159,480   | 298,562    |
| 2025/26 | 45,973    | 67,424     | 113,507   | 239,513    | 159,480   | 306,937    |
| 2026/27 | 45,973    | 68,157     | 113,507   | 247,417    | 159,480   | 315,574    |

#### B1.2 C&D RECYCLING

The assumed operational C&D recycling capacity figure is 1,325,000. The C&D recycling capacity including the current non operational sites is 1,325,000.

The C&D recycling capacity excluding the wharfside sites is 75,000.

 Table 1.2
 C&D Recycling Arisings vs Capacity

|         | Best Case | Worst case |
|---------|-----------|------------|
|         |           |            |
| 2007/08 | 170,125   | 170,125    |
| 2008/09 | 170,125   | 178,308    |
| 2009/10 | 170,125   | 186,676    |
| 2010/11 | 170,125   | 195,236    |
| 2011/12 | 170,125   | 203,993    |
| 2012/13 | 170,125   | 212,954    |
| 2013/14 | 170,125   | 222,127    |
| 2014/15 | 170,125   | 231,517    |
| 2015/16 | 170,125   | 241,132    |
| 2016/17 | 170,125   | 250,980    |
| 2017/18 | 170,125   | 261,068    |
| 2018/19 | 170,125   | 271,405    |
| 2019/20 | 170,125   | 281,997    |
| 2020/21 | 170,125   | 292,855    |
| 2021/22 | 170,125   | 303,986    |
| 2022/23 | 170,125   | 312,831    |
| 2023/24 | 170,125   | 321,967    |
| 2024/25 | 170,125   | 331,405    |
| 2025/26 | 170,125   | 341,155    |
| 2026/27 | 170,125   | 351,226    |

#### B1.3 RECOVERY

The assumed operational capacity figure for recovery is 69,973. The recovery capacity including the current non operational sites is 69,973. The recovery capacity if tyre plant and WEEE facilities are not included is 0.

Table 1.3 Recovery Arisings vs Capacity

|         | M         | SW         | C         | &I         | To        | otal       |
|---------|-----------|------------|-----------|------------|-----------|------------|
|         | Best Case | Worst case | Best Case | Worst case | Best Case | Worst case |
| 2007/08 | 16,279    | 16,279     | 17,669    | 20,783     | 33,948    | 37,062     |
| 2008/09 | 20,428    | 21,919     | 17,669    | 21,469     | 38,097    | 43,388     |
| 2009/10 | 21,895    | 24,673     | 22,318    | 28,013     | 44,213    | 52,686     |
| 2010/11 | 21,170    | 25,027     | 22,318    | 28,938     | 43,488    | 53,965     |
| 2011/12 | 22,744    | 27,731     | 22,318    | 29,893     | 45,063    | 57,624     |
| 2012/13 | 24,318    | 30,354     | 22,318    | 30,879     | 46,636    | 61,233     |
| 2013/14 | 23,583    | 30,589     | 22,318    | 31,898     | 45,902    | 62,487     |
| 2014/15 | 22,848    | 30,742     | 23,248    | 34,324     | 46,096    | 65,065     |
| 2015/16 | 22,114    | 30,814     | 23,248    | 35,457     | 45,362    | 66,270     |
| 2016/17 | 20,995    | 30,321     | 23,248    | 36,627     | 44,243    | 66,948     |
| 2017/18 | 19,878    | 29,725     | 23,248    | 37,835     | 43,126    | 67,560     |
| 2018/19 | 18,759    | 29,020     | 23,248    | 39,084     | 42,007    | 68,104     |
| 2019/20 | 17,640    | 28,208     | 23,248    | 40,374     | 40,889    | 68,582     |
| 2020/21 | 17,640    | 29,124     | 23,248    | 41,706     | 40,889    | 70,830     |
| 2021/22 | 17,640    | 30,046     | 23,248    | 43,082     | 40,889    | 73,128     |
| 2022/23 | 17,640    | 30,511     | 23,248    | 44,504     | 40,889    | 75,015     |
| 2023/24 | 17,640    | 30,982     | 23,248    | 45,973     | 40,889    | 76,954     |
| 2024/25 | 17,640    | 31,458     | 23,248    | 47,490     | 40,889    | 78,948     |
| 2025/26 | 17,640    | 31,941     | 23,248    | 49,057     | 40,889    | 80,998     |
| 2026/27 | 17,640    | 32,430     | 23,248    | 50,676     | 40,889    | 83,106     |

## B1.4 NON HAZARDOUS LANDFILL

Table 1.4 Non Haz Landfill Arisings vs Capacity

|         |           |        |           |        | London  |         |         |
|---------|-----------|--------|-----------|--------|---------|---------|---------|
|         |           |        |           |        | Imports | Residue | s - MSW |
|         | MS        | W      | C&        | εI     | EE Plan | and     | C&I     |
|         |           | Worst  |           | Worst  |         | Best    | Worst   |
|         | Best Case | case   | Best Case | case   |         | Case    | Case    |
| 2007/08 | 37,622    | 37,622 | 78,406    | 92,226 | 277,000 | 10,184  | 11,119  |
| 2008/09 | 33,207    | 33,207 | 78,406    | 95,269 | 255,000 | 11,429  | 13,016  |
| 2009/10 | 27,909    | 27,909 | 51,055    | 64,083 | 233,000 | 13,264  | 15,806  |
| 2010/11 | 24,803    | 24,803 | 51,055    | 66,198 | 212,000 | 13,046  | 16,190  |
| 2011/12 | 21,696    | 21,696 | 51,055    | 68,382 | 190,000 | 13,519  | 17,287  |
| 2012/13 | 18,590    | 18,590 | 51,055    | 70,639 | 168,000 | 13,991  | 18,370  |
| 2013/14 | 17,792    | 17,792 | 51,055    | 72,970 | 146,000 | 13,771  | 18,746  |
| 2014/15 | 16,995    | 16,995 | 45,585    | 67,302 | 125,000 | 13,829  | 19,520  |
| 2015/16 | 16,197    | 16,197 | 45,585    | 69,523 | 103,000 | 13,609  | 19,881  |
| 2016/17 | 15,400    | 15,400 | 45,585    | 71,817 | 103,000 | 13,273  | 20,084  |
| 2017/18 | 14,602    | 14,602 | 45,585    | 74,187 | 103,000 | 12,938  | 20,268  |
| 2018/19 | 13,805    | 13,805 | 45,585    | 76,635 | 103,000 | 12,602  | 20,431  |
| 2019/20 | 13,008    | 13,008 | 45,585    | 79,164 | 103,000 | 12,267  | 20,575  |
| 2020/21 | 13,008    | 13,008 | 45,585    | 81,777 | 103,000 | 12,267  | 21,249  |
| 2021/22 | 13,008    | 13,008 | 45,585    | 84,475 | 103,000 | 12,267  | 21,939  |
| 2022/23 | 13,008    | 13,008 | 45,585    | 87,263 | 103,000 | 12,267  | 22,504  |
| 2023/24 | 13,008    | 13,008 | 45,585    | 90,143 | 103,000 | 12,267  | 23,086  |
| 2024/25 | 13,008    | 13,008 | 45,585    | 93,117 | 103,000 | 12,267  | 23,684  |
| 2025/26 | 13,008    | 13,008 | 45,585    | 96,190 | 103,000 | 12,267  | 24,299  |
| 2026/27 | 13,008    | 13,008 | 45,585    | 99,364 | 103,000 | 12,267  | 24,932  |

Table 1.5 Total Arisings vs Non Haz Landfill (Decreasing Capacity)

|         |                  |                   |              |            | Non Haz La<br>Capacity (in |               | Non Haz La   | ndfill      | Non Haz Lar<br>Capacity (inc |                |
|---------|------------------|-------------------|--------------|------------|----------------------------|---------------|--------------|-------------|------------------------------|----------------|
|         |                  |                   |              |            | operational                | sites that do | Capacity (in | c currently | operational sites, planned   |                |
|         | Total Arisin     | ngs from Table    | Operational  | Non Haz    | not hold a p               | lanning       | operational  | sites and   | sites and potential void     |                |
|         | Above            |                   | Landfill Cap | pacity     | permission)                |               | planned site | s)          | from mineral                 | l extractions) |
|         | <b>Best Case</b> | <b>Worst Case</b> | Best Case    | Worst Case | Best Case                  | Worst Case    | Best Case    | Worst Case  | Best Case                    | Worst Case     |
| 2007/08 | 126,213          | 140,967           | 5,600,000    | 5,600,000  | 5,600,000                  | 5,600,000     | 5,600,000    | 5,600,000   | 7,600,000                    | 7,600,000      |
| 2008/09 | 123,042          | 141,493           | 5,196,787    | 5,182,033  | 5,196,787                  | 5,182,033     | 5,196,787    | 5,182,033   | 7,196,787                    | 7,182,033      |
| 2009/10 | 92,228           | 107,798           | 4,818,745    | 4,785,541  | 4,818,745                  | 4,785,541     | 4,818,745    | 4,785,541   | 6,818,745                    | 6,785,541      |
| 2010/11 | 88,905           | 107,190           | 4,493,517    | 4,444,743  | 4,493,517                  | 4,444,743     | 4,493,517    | 4,444,743   | 6,493,517                    | 6,444,743      |
| 2011/12 | 86,270           | 107,365           | 4,192,612    | 4,125,552  | 4,192,612                  | 4,125,552     | 4,192,612    | 4,125,552   | 6,192,612                    | 6,125,552      |
| 2012/13 | 83,636           | 107,599           | 3,916,342    | 3,828,187  | 3,916,342                  | 3,828,187     | 3,916,342    | 3,828,187   | 5,916,342                    | 5,828,187      |
| 2013/14 | 82,618           | 109,508           | 3,664,705    | 3,552,588  | 3,664,705                  | 3,552,588     | 3,664,705    | 3,552,588   | 5,664,705                    | 5,552,588      |
| 2014/15 | 76,409           | 103,816           | 3,436,087    | 3,297,080  | 3,436,087                  | 3,297,080     | 3,436,087    | 3,297,080   | 5,436,087                    | 5,297,080      |
| 2015/16 | 75,391           | 105,601           | 3,234,678    | 3,068,263  | 3,234,678                  | 3,068,263     | 3,234,678    | 3,068,263   | 5,234,678                    | 5,068,263      |
| 2016/17 | 74,258           | 107,302           | 3,056,288    | 2,859,662  | 3,056,288                  | 2,859,662     | 3,056,288    | 2,859,662   | 5,056,288                    | 4,859,662      |
| 2017/18 | 73,125           | 109,057           | 2,879,029    | 2,649,361  | 2,879,029                  | 2,649,361     | 2,879,029    | 2,649,361   | 4,879,029                    | 4,649,361      |
| 2018/19 | 71,992           | 110,871           | 2,702,905    | 2,437,304  | 2,702,905                  | 2,437,304     | 2,702,905    | 2,437,304   | 4,702,905                    | 4,437,304      |
| 2019/20 | 70,860           | 112,747           | 2,527,912    | 2,223,432  | 2,527,912                  | 2,223,432     | 2,527,912    | 2,223,432   | 4,527,912                    | 4,223,432      |
| 2020/21 | 70,860           | 116,034           | 2,354,052    | 2,007,686  | 2,354,052                  | 2,007,686     | 2,354,052    | 2,007,686   | 4,354,052                    | 4,007,686      |
| 2021/22 | 70,860           | 119,422           | 2,180,193    | 1,788,652  | 2,180,193                  | 1,788,652     | 2,180,193    | 1,788,652   | 4,180,193                    | 3,788,652      |
| 2022/23 | 70,860           | 122,775           | 2,006,333    | 1,566,230  | 2,006,333                  | 1,566,230     | 2,006,333    | 1,566,230   | 4,006,333                    | 3,566,230      |
| 2023/24 | 70,860           | 126,237           | 1,832,473    | 1,340,455  | 1,832,473                  | 1,340,455     | 1,832,473    | 1,340,455   | 3,832,473                    | 3,340,455      |
| 2024/25 | 70,860           | 129,810           | 1,658,613    | 1,111,218  | 1,658,613                  | 1,111,218     | 1,658,613    | 1,111,218   | 3,658,613                    | 3,111,218      |
| 2025/26 | 70,860           | 133,498           | 1,484,753    | 878,408    | 1,484,753                  | 878,408       | 1,484,753    | 878,408     | 3,484,753                    | 2,878,408      |
| 2026/27 | 70,860           | 137,304           | 1,310,894    | 641,911    | 1,310,894                  | 641,911       | 1,310,894    | 641,911     | 3,310,894                    | 2,641,911      |

## B1.5 INERT LANDFILL

Table 1.6 C&D Landfill Arisings vs Inert Landfill Capacity (Decreasing)

|         |                  |            |           |                |                       |                |           |               |                     | fill Capacity              |  |
|---------|------------------|------------|-----------|----------------|-----------------------|----------------|-----------|---------------|---------------------|----------------------------|--|
|         |                  |            |           |                |                       | fill Capacity  |           |               | •                   | (inc currently operational |  |
|         |                  |            |           |                |                       | ly operational |           | fill Capacity |                     | ned sites and              |  |
|         |                  |            | -         | Inert Landfill |                       | lo not hold a  | ,         | y operational | potential void from |                            |  |
|         |                  | sings      | Cap       | acity          | planning <sub>l</sub> | permission)    |           | lanned sites) |                     | extractions)               |  |
|         | <b>Best Case</b> | Worst case | Best Case | Worst case     | Best Case             | Worst case     | Best Case | Worst Case    | Best Case           | Worst Case                 |  |
| 2007/08 | 101,157          | 101,157    | 3,830,000 | 3,830,000      | 4,230,000             | 4,230,000      | 5,900,000 | 5,900,000     | 9,400,000           | 9,400,000                  |  |
| 2008/09 | 101,157          | 106,022    | 3,728,843 | 3,728,843      | 4,128,843             | 4,128,843      | 5,798,843 | 5,798,843     | 9,298,843           | 9,298,843                  |  |
| 2009/10 | 101,157          | 110,998    | 3,627,687 | 3,622,821      | 4,027,687             | 4,022,821      | 5,697,687 | 5,692,821     | 9,197,687           | 9,192,821                  |  |
| 2010/11 | 101,157          | 116,087    | 3,526,530 | 3,511,824      | 3,926,530             | 3,911,824      | 5,596,530 | 5,581,824     | 9,096,530           | 9,081,824                  |  |
| 2011/12 | 101,157          | 121,294    | 3,425,374 | 3,395,737      | 3,825,374             | 3,795,737      | 5,495,374 | 5,465,737     | 8,995,374           | 8,965,737                  |  |
| 2012/13 | 101,157          | 126,623    | 3,324,217 | 3,274,442      | 3,724,217             | 3,674,442      | 5,394,217 | 5,344,442     | 8,894,217           | 8,844,442                  |  |
| 2013/14 | 101,157          | 132,076    | 3,223,061 | 3,147,820      | 3,623,061             | 3,547,820      | 5,293,061 | 5,217,820     | 8,793,061           | 8,717,820                  |  |
| 2014/15 | 101,157          | 137,660    | 3,121,904 | 3,015,743      | 3,521,904             | 3,415,743      | 5,191,904 | 5,085,743     | 8,691,904           | 8,585,743                  |  |
| 2015/16 | 101,157          | 143,377    | 3,020,748 | 2,878,083      | 3,420,748             | 3,278,083      | 5,090,748 | 4,948,083     | 8,590,748           | 8,448,083                  |  |
| 2016/17 | 101,157          | 149,233    | 2,919,591 | 2,734,706      | 3,319,591             | 3,134,706      | 4,989,591 | 4,804,706     | 8,489,591           | 8,304,706                  |  |
| 2017/18 | 101,157          | 155,231    | 2,818,435 | 2,585,473      | 3,218,435             | 2,985,473      | 4,888,435 | 4,655,473     | 8,388,435           | 8,155,473                  |  |
| 2018/19 | 101,157          | 161,377    | 2,717,278 | 2,430,242      | 3,117,278             | 2,830,242      | 4,787,278 | 4,500,242     | 8,287,278           | 8,000,242                  |  |
| 2019/20 | 101,157          | 167,676    | 2,616,122 | 2,268,865      | 3,016,122             | 2,668,865      | 4,686,122 | 4,338,865     | 8,186,122           | 7,838,865                  |  |
| 2020/21 | 101,157          | 174,131    | 2,514,965 | 2,101,189      | 2,914,965             | 2,501,189      | 4,584,965 | 4,171,189     | 8,084,965           | 7,671,189                  |  |
| 2021/22 | 101,157          | 180,750    | 2,413,809 | 1,927,058      | 2,813,809             | 2,327,058      | 4,483,809 | 3,997,058     | 7,983,809           | 7,497,058                  |  |
| 2022/23 | 101,157          | 186,009    | 2,312,652 | 1,746,308      | 2,712,652             | 2,146,308      | 4,382,652 | 3,816,308     | 7,882,652           | 7,316,308                  |  |
| 2023/24 | 101,157          | 191,442    | 2,211,496 | 1,560,299      | 2,611,496             | 1,960,299      | 4,281,496 | 3,630,299     | 7,781,496           | 7,130,299                  |  |
| 2024/25 | 101,157          | 197,054    | 2,110,339 | 1,368,858      | 2,510,339             | 1,768,858      | 4,180,339 | 3,438,858     | 7,680,339           | 6,938,858                  |  |
| 2025/26 | 101,157          | 202,851    | 2,009,183 | 1,171,804      | 2,409,183             | 1,571,804      | 4,079,183 | 3,241,804     | 7,579,183           | 6,741,804                  |  |
| 2026/27 | 101,157          | 208,839    | 1,908,026 | 968,953        | 2,308,026             | 1,368,953      | 3,978,026 | 3,038,953     | 7,478,026           | 6,538,953                  |  |

## Annex C

# RSS Scenario Arisings vs Capacity

#### C1 RSS SCENARIO

#### C1.1 RECYCLING

The assumed operational recycling capacity figure for recycling is 48,333. The recycling capacity including the current non operational sites is 48,333.

Table 1.1 RSS Scenario Arisings vs Recycling Capacity

|         | MSW    | C&I     | Total   |
|---------|--------|---------|---------|
| 2007/08 | 26,685 | 97,932  | 124,617 |
| 2008/09 | 30,783 | 109,095 | 139,878 |
| 2009/10 | 35,454 | 120,674 | 156,127 |
| 2010/11 | 40,400 | 133,265 | 173,665 |
| 2011/12 | 42,420 | 138,593 | 181,013 |
| 2012/13 | 44,880 | 143,384 | 188,264 |
| 2013/14 | 47,380 | 148,235 | 195,615 |
| 2014/15 | 50,400 | 153,145 | 203,545 |
| 2015/16 | 53,000 | 159,983 | 212,983 |
| 2016/17 | 55,283 | 173,394 | 228,677 |
| 2017/18 | 57,600 | 188,001 | 245,601 |
| 2018/19 | 59,950 | 202,462 | 262,412 |
| 2019/20 | 62,333 | 218,182 | 280,515 |
| 2020/21 | 64,750 | 233,693 | 298,443 |
| 2021/22 | 66,600 | 233,693 | 300,293 |
| 2022/23 | 66,600 | 233,693 | 300,293 |
| 2023/24 | 66,600 | 233,693 | 300,293 |
| 2024/25 | 66,600 | 233,693 | 300,293 |
| 2025/26 | 66,600 | 233,693 | 300,293 |
| 2026/27 | 66,600 | 233,693 | 300,293 |

#### C1.2 RECOVERY

The assumed operational capacity figure for recovery is 69,973. The recovery capacity including the current non operational sites is 69,973. The recovery capacity if tyre plant and WEEE facilities are not included is 0.

Table 1.2 RSS Scenario Arisings vs Recovery Capacity

|         | MSW    | C&I    | Total  |
|---------|--------|--------|--------|
| 2007/09 | 111311 |        |        |
| 2007/08 | -      | 20,058 | 20,058 |
| 2008/09 | 3,100  | 22,345 | 25,445 |
| 2009/10 | 6,467  | 24,716 | 31,183 |
| 2010/11 | 10,100 | 27,295 | 37,395 |
| 2011/12 | 12,120 | 28,387 | 40,507 |
| 2012/13 | 14,280 | 29,368 | 43,648 |
| 2013/14 | 16,480 | 30,361 | 46,841 |
| 2014/15 | 18,900 | 31,367 | 50,267 |
| 2015/16 | 21,200 | 32,768 | 53,968 |
| 2016/17 | 24,610 | 35,514 | 60,124 |
| 2017/18 | 28,080 | 38,506 | 66,586 |
| 2018/19 | 31,610 | 41,468 | 73,078 |
| 2019/20 | 35,200 | 44,688 | 79,888 |
| 2020/21 | 38,850 | 47,865 | 86,715 |
| 2021/22 | 42,180 | 47,865 | 90,045 |
| 2022/23 | 42,180 | 47,865 | 90,045 |
| 2023/24 | 42,180 | 47,865 | 90,045 |
| 2024/25 | 42,180 | 47,865 | 90,045 |
| 2025/26 | 42,180 | 47,865 | 90,045 |
| 2026/27 | 42,180 | 47,865 | 90,045 |

#### C1.3 NON HAZ LANDFILL

Table 1.3 RSS Scenario Arisings vs Non Haz Landfill Capacity

|         |        |        | London            |             |         |
|---------|--------|--------|-------------------|-------------|---------|
|         |        |        | <b>Imports EE</b> | Residues -  |         |
|         | MSW    | C&I    | Plan              | MSW and C&I | Total   |
| 2007/08 | 63,315 | 89,010 | 277,000           | 6,017       | 158,342 |
| 2008/09 | 59,117 | 80,560 | 255,000           | 7,633       | 147,310 |
| 2009/10 | 55,080 | 71,610 | 233,000           | 9,355       | 136,045 |
| 2010/11 | 50,500 | 62,440 | 212,000           | 11,219      | 124,159 |
| 2011/12 | 46,460 | 63,020 | 190,000           | 12,152      | 121,632 |
| 2012/13 | 42,840 | 63,248 | 168,000           | 13,094      | 119,182 |
| 2013/14 | 39,140 | 63,404 | 146,000           | 14,052      | 116,596 |
| 2014/15 | 35,700 | 63,488 | 125,000           | 15,080      | 114,268 |
| 2015/16 | 31,800 | 64,250 | 103,000           | 16,190      | 112,240 |
| 2016/17 | 27,107 | 56,092 | 103,000           | 18,037      | 101,236 |
| 2017/18 | 22,320 | 47,493 | 103,000           | 19,976      | 89,789  |
| 2018/19 | 17,440 | 38,070 | 103,000           | 21,923      | 77,433  |
| 2019/20 | 12,467 | 28,130 | 103,000           | 23,966      | 64,563  |
| 2020/21 | 7,400  | 17,442 | 103,000           | 26,014      | 50,856  |
| 2021/22 | 2,220  | 17,442 | 103,000           | 27,013      | 46,675  |
| 2022/23 | 2,220  | 17,442 | 103,000           | 27,013      | 46,675  |
| 2023/24 | 2,220  | 17,442 | 103,000           | 27,013      | 46,675  |
| 2024/25 | 2,220  | 17,442 | 103,000           | 27,013      | 46,675  |
| 2025/26 | 2,220  | 17,442 | 103,000           | 27,013      | 46,675  |
| 2026/27 | 2,220  | 17,442 | 103,000           | 27,013      | 46,675  |

Table 1.4 RSS Scenario Arisings vs Decreasing Non Haz Landfill Capacity

|         |             | Non Haz Landfill       |                       | Non Haz Landfill     |
|---------|-------------|------------------------|-----------------------|----------------------|
|         |             | Capacity (inc.         |                       | Capacity (inc        |
|         |             | currently              | Non Haz Landfill      | currently            |
|         | Operational | operational sites that | Capacity (inc         | operational sites,   |
|         | Non Haz     | do not hold a          | currently             | planned sites and    |
|         | Landfill    | planning               | operational sites and | potential void from  |
|         | Capacity    | permission)            | planned sites)        | mineral extractions) |
| 2007/08 | 5,600,000   | 5,600,000              | 5,600,000             | 7,600,000            |
| 2008/09 | 5,164,658   | 5,164,658              | 5,164,658             | 7,164,658            |
| 2009/10 | 4,762,347   | 4,762,347              | 4,762,347             | 6,762,347            |
| 2010/11 | 4,393,302   | 4,393,302              | 4,393,302             | 6,393,302            |
| 2011/12 | 4,057,144   | 4,057,144              | 4,057,144             | 6,057,144            |
| 2012/13 | 3,745,512   | 3,745,512              | 3,745,512             | 5,745,512            |
| 2013/14 | 3,458,329   | 3,458,329              | 3,458,329             | 5,458,329            |
| 2014/15 | 3,195,733   | 3,195,733              | 3,195,733             | 5,195,733            |
| 2015/16 | 2,956,465   | 2,956,465              | 2,956,465             | 4,956,465            |
| 2016/17 | 2,741,225   | 2,741,225              | 2,741,225             | 4,741,225            |
| 2017/18 | 2,536,989   | 2,536,989              | 2,536,989             | 4,536,989            |
| 2018/19 | 2,344,200   | 2,344,200              | 2,344,200             | 4,344,200            |
| 2019/20 | 2,163,766   | 2,163,766              | 2,163,766             | 4,163,766            |
| 2020/21 | 1,996,203   | 1,996,203              | 1,996,203             | 3,996,203            |
| 2021/22 | 1,842,347   | 1,842,347              | 1,842,347             | 3,842,347            |
| 2022/23 | 1,692,672   | 1,692,672              | 1,692,672             | 3,692,672            |
| 2023/24 | 1,542,997   | 1,542,997              | 1,542,997             | 3,542,997            |
| 2024/25 | 1,393,322   | 1,393,322              | 1,393,322             | 3,393,322            |
| 2025/26 | 1,243,647   | 1,243,647              | 1,243,647             | 3,243,647            |
| 2026/27 | 1,093,972   | 1,093,972              | 1,093,972             | 3,093,972            |

#### Annex D

## C&I Waste Management Methods Variation (Tables)

# D1 C&I WASTE MANAGEMENT METHOD ASSUMPTION SENSITIVITY ANALYSIS

#### D1.1 70/30 SPLIT

#### D1.1.1 Recycling and Composting (alternative results)

The assumed operational recycling capacity figure for recycling is 48,333. The recycling capacity including the current non operational sites is 48,333.

Table 1.1 Recycling Arisings vs Capacity (70/30 split)

|         | M         | SW         | C         | &I                      | To               | otal       |
|---------|-----------|------------|-----------|-------------------------|------------------|------------|
|         | Best Case | Worst case | Best Case | Worst case              | <b>Best Case</b> | Worst case |
| 2007/08 | 22,720    | 22,720     | 31,180    | 36,676                  | 53,900           | 59,396     |
| 2008/09 | 22,986    | 23,626     | 31,180    | 37,886                  | 54,167           | 61,512     |
| 2009/10 | 26,817    | 28,313     | 39,386    | 49,436                  | 66,203           | 77,749     |
| 2010/11 | 30,648    | 33,220     | 39,386    | 51,067                  | 70,034           | 84,287     |
| 2011/12 | 32,181    | 35,792     | 39,386    | 52,752                  | 71,566           | 88,544     |
| 2012/13 | 33,713    | 38,456     | 39,386    | 54,493                  | 73,099           | 92,949     |
| 2013/14 | 35,246    | 41,213     | 39,386    | 56,291                  | 74,631           | 97,504     |
| 2014/15 | 36,778    | 44,064     | 41,027    | 60,572                  | 77,805           | 104,636    |
| 2015/16 | 38,311    | 47,011     | 41,027    | 62,571                  | 79,337           | 109,581    |
| 2016/17 | 40,226    | 50,534     | 41,027    | 64,635                  | 81,253           | 115,170    |
| 2017/18 | 42,142    | 54,177     | 41,027    | 66,768                  | 83,168           | 120,945    |
| 2018/19 | 44,057    | 57,940     | 41,027    | 68,972                  | 85,084           | 126,912    |
| 2019/20 | 45,973    | 61,825     | 41,027    | 71,248                  | 86,999           | 133,072    |
| 2020/21 | 45,973    | 63,199     | 41,027    | <i>7</i> 3 <i>,</i> 599 | 86,999           | 136,797    |
| 2021/22 | 45,973    | 64,581     | 41,027    | 76,028                  | 86,999           | 140,609    |
| 2022/23 | 45,973    | 65,278     | 41,027    | 78,537                  | 86,999           | 143,815    |
| 2023/24 | 45,973    | 65,984     | 41,027    | 81,128                  | 86,999           | 147,113    |
| 2024/25 | 45,973    | 66,700     | 41,027    | 83,806                  | 86,999           | 150,505    |
| 2025/26 | 45,973    | 67,424     | 41,027    | 86,571                  | 86,999           | 153,995    |
| 2026/27 | 45,973    | 68,157     | 41,027    | 89,428                  | 86,999           | 157,585    |

## D1.1.2 Recovery

The assumed operational capacity figure for recovery is 69,973. The recovery capacity including the current non operational sites is 69,973. The recovery capacity if tyre plant and WEEE facilities are not included is 0.

Table 1.2 Recovery Arisings vs Capacity (70/30 split)

|         | M         | SW         | C         | &I         | To        | otal       |
|---------|-----------|------------|-----------|------------|-----------|------------|
|         | Best Case | Worst case | Best Case | Worst case | Best Case | Worst case |
| 2007/08 | 16,279    | 16,279     | 72,754    | 85,577     | 89,033    | 101,856    |
| 2008/09 | 20,428    | 21,919     | 72,754    | 88,401     | 93,182    | 110,320    |
| 2009/10 | 21,895    | 24,673     | 91,900    | 115,350    | 113,794   | 140,022    |
| 2010/11 | 21,170    | 25,027     | 91,900    | 119,156    | 113,069   | 144,183    |
| 2011/12 | 22,744    | 27,731     | 91,900    | 123,088    | 114,644   | 150,819    |
| 2012/13 | 24,318    | 30,354     | 91,900    | 127,150    | 116,217   | 157,504    |
| 2013/14 | 23,583    | 30,589     | 91,900    | 131,346    | 115,483   | 161,935    |
| 2014/15 | 22,848    | 30,742     | 95,729    | 141,334    | 118,577   | 172,075    |
| 2015/16 | 22,114    | 30,814     | 95,729    | 145,998    | 117,842   | 176,812    |
| 2016/17 | 20,995    | 30,321     | 95,729    | 150,816    | 116,724   | 181,137    |
| 2017/18 | 19,878    | 29,725     | 95,729    | 155,793    | 115,606   | 185,517    |
| 2018/19 | 18,759    | 29,020     | 95,729    | 160,934    | 114,488   | 189,954    |
| 2019/20 | 17,640    | 28,208     | 95,729    | 166,245    | 113,369   | 194,453    |
| 2020/21 | 17,640    | 29,124     | 95,729    | 171,731    | 113,369   | 200,855    |
| 2021/22 | 17,640    | 30,046     | 95,729    | 177,398    | 113,369   | 207,444    |
| 2022/23 | 17,640    | 30,511     | 95,729    | 183,252    | 113,369   | 213,763    |
| 2023/24 | 17,640    | 30,982     | 95,729    | 189,299    | 113,369   | 220,281    |
| 2024/25 | 17,640    | 31,458     | 95,729    | 195,546    | 113,369   | 227,005    |
| 2025/26 | 17,640    | 31,941     | 95,729    | 201,999    | 113,369   | 233,940    |
| 2026/27 | 17,640    | 32,430     | 95,729    | 208,665    | 113,369   | 241,095    |

#### D1.2 50/50 SPLIT

## D1.2.1 Recycling and Composting (alternative results)

The assumed operational recycling capacity figure for recycling is 48,333. The recycling capacity including the current non operational sites is 48,333.

Table 1.3 Recycling Arisings vs Capacity (50/50 split)

|         | M         | SW         | C         | &I         | To        | otal       |
|---------|-----------|------------|-----------|------------|-----------|------------|
|         | Best Case | Worst case | Best Case | Worst case | Best Case | Worst case |
| 2007/08 | 22,720    | 22,720     | 51,967    | 61,127     | 74,687    | 83,847     |
| 2008/09 | 22,986    | 23,626     | 51,967    | 63,144     | 74,953    | 86,769     |
| 2009/10 | 26,817    | 28,313     | 65,643    | 82,393     | 92,460    | 110,706    |
| 2010/11 | 30,648    | 33,220     | 65,643    | 85,111     | 96,291    | 118,332    |
| 2011/12 | 32,181    | 35,792     | 65,643    | 87,920     | 97,823    | 123,712    |
| 2012/13 | 33,713    | 38,456     | 65,643    | 90,822     | 99,356    | 129,277    |
| 2013/14 | 35,246    | 41,213     | 65,643    | 93,819     | 100,888   | 135,032    |
| 2014/15 | 36,778    | 44,064     | 68,378    | 100,953    | 105,156   | 145,017    |
| 2015/16 | 38,311    | 47,011     | 68,378    | 104,284    | 106,688   | 151,295    |
| 2016/17 | 40,226    | 50,534     | 68,378    | 107,726    | 108,604   | 158,260    |
| 2017/18 | 42,142    | 54,177     | 68,378    | 111,281    | 110,519   | 165,457    |
| 2018/19 | 44,057    | 57,940     | 68,378    | 114,953    | 112,435   | 172,893    |
| 2019/20 | 45,973    | 61,825     | 68,378    | 118,746    | 114,350   | 180,571    |
| 2020/21 | 45,973    | 63,199     | 68,378    | 122,665    | 114,350   | 185,863    |
| 2021/22 | 45,973    | 64,581     | 68,378    | 126,713    | 114,350   | 191,294    |
| 2022/23 | 45,973    | 65,278     | 68,378    | 130,894    | 114,350   | 196,173    |
| 2023/24 | 45,973    | 65,984     | 68,378    | 135,214    | 114,350   | 201,198    |
| 2024/25 | 45,973    | 66,700     | 68,378    | 139,676    | 114,350   | 206,375    |
| 2025/26 | 45,973    | 67,424     | 68,378    | 144,285    | 114,350   | 211,709    |
| 2026/27 | 45,973    | 68,157     | 68,378    | 149,047    | 114,350   | 217,204    |

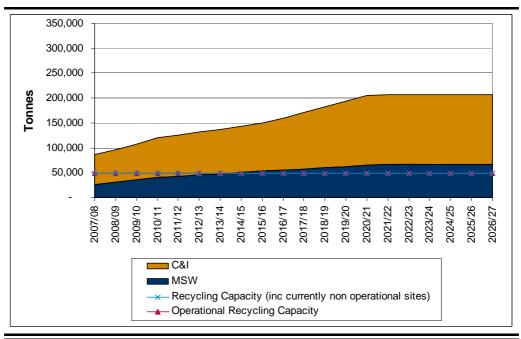
## D1.2.2 Recovery

The assumed operational capacity figure for recovery is 69,973. The recovery capacity including the current non operational sites is 69,973. The recovery capacity if tyre plant and WEEE facilities are not included is 0.

Table 1.4 Recovery Arisings vs Capacity (50/50 split)

|         | M         | SW         | C         | &I         | To        | otal       |
|---------|-----------|------------|-----------|------------|-----------|------------|
|         | Best Case | Worst case | Best Case | Worst case | Best Case | Worst case |
| 2007/08 | 16,279    | 16,279     | 51,967    | 61,127     | 68,246    | 77,406     |
| 2008/09 | 20,428    | 21,919     | 51,967    | 63,144     | 72,395    | 85,063     |
| 2009/10 | 21,895    | 24,673     | 65,643    | 82,393     | 87,537    | 107,065    |
| 2010/11 | 21,170    | 25,027     | 65,643    | 85,111     | 86,812    | 110,139    |
| 2011/12 | 22,744    | 27,731     | 65,643    | 87,920     | 88,387    | 115,651    |
| 2012/13 | 24,318    | 30,354     | 65,643    | 90,822     | 89,960    | 121,175    |
| 2013/14 | 23,583    | 30,589     | 65,643    | 93,819     | 89,226    | 124,407    |
| 2014/15 | 22,848    | 30,742     | 68,378    | 100,953    | 91,226    | 131,694    |
| 2015/16 | 22,114    | 30,814     | 68,378    | 104,284    | 90,491    | 135,098    |
| 2016/17 | 20,995    | 30,321     | 68,378    | 107,726    | 89,373    | 138,047    |
| 2017/18 | 19,878    | 29,725     | 68,378    | 111,281    | 88,255    | 141,005    |
| 2018/19 | 18,759    | 29,020     | 68,378    | 114,953    | 87,137    | 143,973    |
| 2019/20 | 17,640    | 28,208     | 68,378    | 118,746    | 86,018    | 146,955    |
| 2020/21 | 17,640    | 29,124     | 68,378    | 122,665    | 86,018    | 151,789    |
| 2021/22 | 17,640    | 30,046     | 68,378    | 126,713    | 86,018    | 156,759    |
| 2022/23 | 17,640    | 30,511     | 68,378    | 130,894    | 86,018    | 161,405    |
| 2023/24 | 17,640    | 30,982     | 68,378    | 135,214    | 86,018    | 166,195    |
| 2024/25 | 17,640    | 31,458     | 68,378    | 139,676    | 86,018    | 171,134    |
| 2025/26 | 17,640    | 31,941     | 68,378    | 144,285    | 86,018    | 176,226    |
| 2026/27 | 17,640    | 32,430     | 68,378    | 149,047    | 86,018    | 181,477    |

#### D2.1 50/50 SPLIT


#### D2.1.1 Recycling

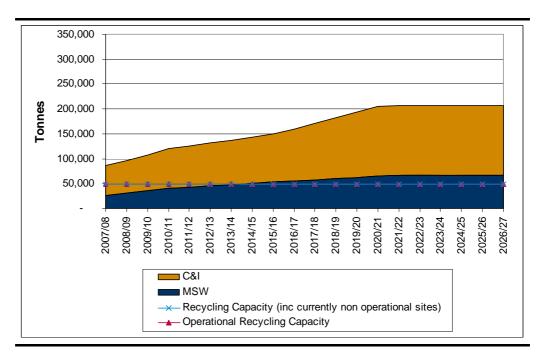
The assumed operational recycling capacity figure for recycling is 48,333. The recycling capacity including the current non operational sites is 48,333.

Table 2.1 RSS Scenario Arisings vs Recycling Capacity

|         | MSW    | C&I     | Total   |
|---------|--------|---------|---------|
| 2007/08 | 26,685 | 58,995  | 85,680  |
| 2008/09 | 30,783 | 65,720  | 96,503  |
| 2009/10 | 35,454 | 72,695  | 108,149 |
| 2010/11 | 40,400 | 80,280  | 120,680 |
| 2011/12 | 42,420 | 83,490  | 125,910 |
| 2012/13 | 44,880 | 86,376  | 131,256 |
| 2013/14 | 47,380 | 89,298  | 136,678 |
| 2014/15 | 50,400 | 92,256  | 142,656 |
| 2015/16 | 53,000 | 96,375  | 149,375 |
| 2016/17 | 55,283 | 104,454 | 159,738 |
| 2017/18 | 57,600 | 113,253 | 170,853 |
| 2018/19 | 59,950 | 121,965 | 181,915 |
| 2019/20 | 62,333 | 131,435 | 193,768 |
| 2020/21 | 64,750 | 140,779 | 205,529 |
| 2021/22 | 66,600 | 140,779 | 207,379 |
| 2022/23 | 66,600 | 140,779 | 207,379 |
| 2023/24 | 66,600 | 140,779 | 207,379 |
| 2024/25 | 66,600 | 140,779 | 207,379 |
| 2025/26 | 66,600 | 140,779 | 207,379 |
| 2026/27 | 66,600 | 140,779 | 207,379 |

Figure 2.1 Need for Recycling and Composting Capacity - New C&I Waste Management Method Assumption 50/50 Split (RSS Conformity)




#### D2.1.2 Recovery

The assumed operational capacity figure for recovery is 69,973. The recovery capacity including the current non operational sites is 69,973. The recovery capacity if tyre plant and WEEE facilities are not included is 0.

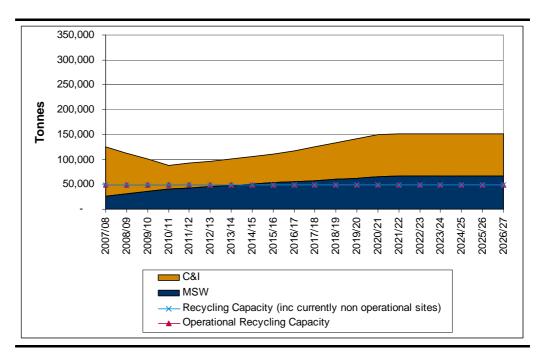
Table 2.2 RSS Scenario Arisings vs Recovery Capacity

|         | MSW    | C&I             | Total   |
|---------|--------|-----------------|---------|
|         | MISVV  |                 |         |
| 2007/08 | -      | 58 <i>,</i> 995 | 58,995  |
| 2008/09 | 3,100  | 65,720          | 68,820  |
| 2009/10 | 6,467  | 72,695          | 79,162  |
| 2010/11 | 10,100 | 80,280          | 90,380  |
| 2011/12 | 12,120 | 83,490          | 95,610  |
| 2012/13 | 14,280 | 86,376          | 100,656 |
| 2013/14 | 16,480 | 89,298          | 105,778 |
| 2014/15 | 18,900 | 92,256          | 111,156 |
| 2015/16 | 21,200 | 96,375          | 117,575 |
| 2016/17 | 24,610 | 104,454         | 129,064 |
| 2017/18 | 28,080 | 113,253         | 141,333 |
| 2018/19 | 31,610 | 121,965         | 153,575 |
| 2019/20 | 35,200 | 131,435         | 166,635 |
| 2020/21 | 38,850 | 140,779         | 179,629 |
| 2021/22 | 42,180 | 140,779         | 182,959 |
| 2022/23 | 42,180 | 140,779         | 182,959 |
| 2023/24 | 42,180 | 140,779         | 182,959 |
| 2024/25 | 42,180 | 140,779         | 182,959 |
| 2025/26 | 42,180 | 140,779         | 182,959 |
| 2026/27 | 42,180 | 140,779         | 182,959 |

Figure 2.2 Need for Recovery Capacity - New C&I Waste Management Method Assumption 50/50 Split (RSS Conformity)



#### D2.2 70/30 SPLIT


#### D2.2.1 Recycling

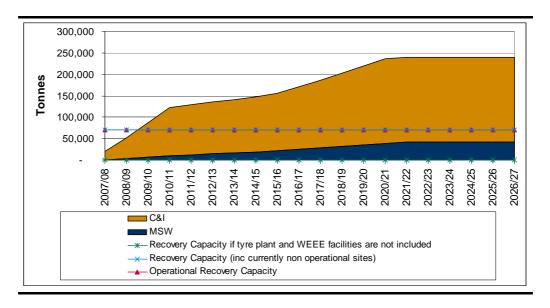
The assumed operational recycling capacity figure for recycling is 48,333. The recycling capacity including the current non operational sites is 48,333.

Table 2.3 RSS Scenario Arisings vs Recycling Capacity

|         | MSW    | C&I    | Total   |
|---------|--------|--------|---------|
| 2007/08 | 26,685 | 97,932 | 124,617 |
| 2008/09 | 30,783 | 82,129 | 112,912 |
| 2009/10 | 35,454 | 65,469 | 100,922 |
| 2010/11 | 40,400 | 48,168 | 88,568  |
| 2011/12 | 42,420 | 50,094 | 92,514  |
| 2012/13 | 44,880 | 51,826 | 96,706  |
| 2013/14 | 47,380 | 53,579 | 100,959 |
| 2014/15 | 50,400 | 55,354 | 105,754 |
| 2015/16 | 53,000 | 57,825 | 110,825 |
| 2016/17 | 55,283 | 62,673 | 117,956 |
| 2017/18 | 57,600 | 67,952 | 125,552 |
| 2018/19 | 59,950 | 73,179 | 133,129 |
| 2019/20 | 62,333 | 78,861 | 141,194 |
| 2020/21 | 64,750 | 84,468 | 149,218 |
| 2021/22 | 66,600 | 84,468 | 151,068 |
| 2022/23 | 66,600 | 84,468 | 151,068 |
| 2023/24 | 66,600 | 84,468 | 151,068 |
| 2024/25 | 66,600 | 84,468 | 151,068 |
| 2025/26 | 66,600 | 84,468 | 151,068 |
| 2026/27 | 66,600 | 84,468 | 151,068 |

Figure 2.3 Need for Recycling and Composting Capacity - New C&I Waste Management Method Assumption 70/30 Split (RSS Conformity)




#### D2.2.2 Recovery

The assumed operational capacity figure for recovery is 69,973. The recovery capacity including the current non operational sites is 69,973. The recovery capacity if tyre plant and WEEE facilities are not included is 0.

Table 2.4 RSS Scenario Arisings vs Recovery Capacity

|         | MSW    | C&I     | Total   |
|---------|--------|---------|---------|
| 2007/08 | -      | 20,058  | 20,058  |
| 2008/09 | 3,100  | 49,311  | 52,411  |
| 2009/10 | 6,467  | 79,921  | 86,388  |
| 2010/11 | 10,100 | 112,392 | 122,492 |
| 2011/12 | 12,120 | 116,886 | 129,006 |
| 2012/13 | 14,280 | 120,926 | 135,206 |
| 2013/14 | 16,480 | 125,017 | 141,497 |
| 2014/15 | 18,900 | 129,158 | 148,058 |
| 2015/16 | 21,200 | 134,925 | 156,125 |
| 2016/17 | 24,610 | 146,236 | 170,846 |
| 2017/18 | 28,080 | 158,555 | 186,635 |
| 2018/19 | 31,610 | 170,751 | 202,361 |
| 2019/20 | 35,200 | 184,009 | 219,209 |
| 2020/21 | 38,850 | 197,091 | 235,941 |
| 2021/22 | 42,180 | 197,091 | 239,271 |
| 2022/23 | 42,180 | 197,091 | 239,271 |
| 2023/24 | 42,180 | 197,091 | 239,271 |
| 2024/25 | 42,180 | 197,091 | 239,271 |
| 2025/26 | 42,180 | 197,091 | 239,271 |
| 2026/27 | 42,180 | 197,091 | 239,271 |

Figure 2.4 Need for Recovery Capacity - New C&I Waste Management Method Assumption 70/30 Split (RSS Conformity)

